EMO实战:使用EMO实现图像分类任务(二)

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整策略
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 关于EMA设置为True时,不上分的问题
  • 测试
  • 热力图可视化展示
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
EMO实战:使用EMO实现图像分类任务(一)
这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.emo import EMO_1M
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):os.environ['PYHTONHASHSEED'] = str(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':#创建保存模型的文件夹file_dir = 'checkpoints/emo/'if os.path.exists(file_dir):print('true')os.makedirs(file_dir,exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数model_lr = 1e-4BATCH_SIZE = 16EPOCHS = 300DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')use_amp = True  # 是否使用混合精度use_dp = True #是否开启dp方式的多卡训练classes = 12resume =NoneCLIP_GRAD = 5.0Best_ACC = 0 #记录最高得分use_ema=Truemodel_ema_decay=0.9998start_epoch=1seed=1seed_everything(seed)

设置存放权重文件的文件夹,如果文件夹存在删除再建立。

接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。
注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

 file_dir = 'checkpoints/MobileViG'

这是存放seaformer模型的路径。

图像预处理与增强

   # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])])mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的CloFormer模型输入是224×224的大小,所以要Resize为224×224。

读取数据

   # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代。pin_memory设置为True,可以加快运行速度。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPUcriterion_train = SoftTargetCrossEntropy()criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

   #设置模型model_ft = EMO_1M(pretrained=False)model_ft.reset_classifier(classes)# num_fr = model_ft.dist_head.in_channels# model_ft.dist_head = nn.Conv2d(num_fr, classes, 1, bias=True)print(model_ft)if resume:model=torch.load(resume)print(model['state_dict'].keys())model_ft.load_state_dict(model['state_dict'])Best_ACC=model['Best_ACC']start_epoch=model['epoch']+1model_ft.to(DEVICE)
  • 设置模型为EMO_1M,由于没有预训练模型,所以将pretrained设置为False。使用reset_classifier方法修改classes。

  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。

  • 如果模型输出是classes的长度,则表示修改正确了。

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:scaler = torch.cuda.amp.GradScaler()if torch.cuda.device_count() > 1 and use_dp:print("Let's use", torch.cuda.device_count(), "GPUs!")model_ft = torch.nn.DataParallel(model_ft)if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device=DEVICE,resume=resume)else:model_ema=None
  • use_amp为True,则开启混合精度训练,声明pytorch自带的混合精度 torch.cuda.amp.GradScaler()。
  • 检测可用显卡的数量,如果大于1,并且开启多卡训练的情况下,则要用torch.nn.DataParallel加载模型,开启多卡训练。
  • 如果使用ema,则注册ema
    注:torch.nn.DataParallel方式,默认不能开启混合精度训练的,如果想要开启混合精度训练,则需要在模型的forward前面加上@autocast()函数。

在这里插入图片描述

如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):model.train()loss_meter = AverageMeter()acc1_meter = AverageMeter()acc5_meter = AverageMeter()total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device, non_blocking=True), Variable(target).to(device,                                                                                 non_blocking=True)samples, targets = mixup_fn(data, target)output = model(samples)optimizer.zero_grad()if use_amp:with torch.cuda.amp.autocast():loss = torch.nan_to_num(criterion_train(output, targets))scaler.scale(loss).backward()torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)# Unscales gradients and calls# or skips optimizer.step()scaler.step(optimizer)# Updates the scale for next iterationscaler.update()else:loss = criterion_train(output, targets)loss.backward()# torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)optimizer.step()if model_ema is not None:model_ema.update(model)torch.cuda.synchronize()lr = optimizer.state_dict()['param_groups'][0]['lr']loss_meter.update(loss.item(), target.size(0))acc1, acc5 = accuracy(output, target, topk=(1, 5))loss_meter.update(loss.item(), target.size(0))acc1_meter.update(acc1.item(), target.size(0))acc5_meter.update(acc5.item(), target.size(0))if (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))ave_loss =loss_meter.avgacc = acc1_meter.avgprint('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()loss_meter = AverageMeter()acc1_meter = AverageMeter()acc5_meter = AverageMeter()total_num = len(test_loader.dataset)print(total_num, len(test_loader))val_list = []pred_list = []for data, target in test_loader:for t in target:val_list.append(t.data.item())data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)output = model(data)loss = criterion_val(output, target)_, pred = torch.max(output.data, 1)for p in pred:pred_list.append(p.data.item())acc1, acc5 = accuracy(output, target, topk=(1, 5))loss_meter.update(loss.item(), target.size(0))acc1_meter.update(acc1.item(), target.size(0))acc5_meter.update(acc5.item(), target.size(0))acc = acc1_meter.avgprint('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(loss_meter.avg,  acc,  acc5_meter.avg))if acc > Best_ACC:if isinstance(model, torch.nn.DataParallel):torch.save(model.module, file_dir + '/' + 'best.pth')else:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accif isinstance(model, torch.nn.DataParallel):state = {'epoch': epoch,'state_dict': model.module.state_dict(),'Best_ACC':Best_ACC}if use_ema:state['state_dict_ema']=model.module.state_dict()torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')else:state = {'epoch': epoch,'state_dict': model.state_dict(),'Best_ACC': Best_ACC}if use_ema:state['state_dict_ema']=model.state_dict()torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证is_set_lr = Falselog_dir = {}train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []if resume and os.path.isfile(file_dir+"result.json"):with open(file_dir+'result.json', 'r', encoding='utf-8') as file:logs = json.load(file)train_acc_list = logs['train_acc']train_loss_list = logs['train_loss']val_acc_list = logs['val_acc']val_loss_list = logs['val_loss']epoch_list = logs['epoch_list']for epoch in range(start_epoch, EPOCHS + 1):epoch_list.append(epoch)log_dir['epoch_list'] = epoch_listtrain_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)train_loss_list.append(train_loss)train_acc_list.append(train_acc)log_dir['train_acc'] = train_acc_listlog_dir['train_loss'] = train_loss_listif use_ema:val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)else:val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)val_loss_list.append(val_loss)val_acc_list.append(val_acc)log_dir['val_acc'] = val_acc_listlog_dir['val_loss'] = val_loss_listlog_dir['best_acc'] = Best_ACCwith open(file_dir + '/result.json', 'w', encoding='utf-8') as file:file.write(json.dumps(log_dir))print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))if epoch < 600:cosine_schedule.step()else:if not is_set_lr:for param_group in optimizer.param_groups:param_group["lr"] = 1e-6is_set_lr = Truefig = plt.figure(1)plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')# 显示图例plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')plt.legend(["Train Loss", "Val Loss"], loc="upper right")plt.xlabel(u'epoch')plt.ylabel(u'loss')plt.title('Model Loss ')plt.savefig(file_dir + "/loss.png")plt.close(1)fig2 = plt.figure(2)plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')plt.legend(["Train Acc", "Val Acc"], loc="lower right")plt.title("Model Acc")plt.ylabel("acc")plt.xlabel("epoch")plt.savefig(file_dir + "/acc.png")plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

EMO测试结果:

在这里插入图片描述

在这里插入图片描述

关于EMA设置为True时,不上分的问题

由于,预训练比较难下载,所以,我没有使用。但是,会带来一个问题,就是在使用EMA的时候,验证集不上分!这时候了,先将EMA设置为False,训练两个epoch。你会发现验证集的ACC上分了。

接下来,将resume设置为最后的epoch模型,将EMA设置为True就可以继续上分了。

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

MobileViG_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import osclasses = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed','Common wheat', 'Fat Hen', 'Loose Silky-bent','Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.51819474, 0.5250407, 0.4945761], std=[0.24228974, 0.24347611, 0.2530049])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/MobileViG/best.pth')
model.eval()
model.to(DEVICE)path = 'test/'
testList = os.listdir(path)
for file in testList:img = Image.open(path + file)img = transform_test(img)img.unsqueeze_(0)img = Variable(img).to(DEVICE)out = model(img)# Predict_, pred = torch.max(out.data, 1)print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 加载model,switch_to_deploy函数,切换成推理模式,进一步提高运行速度,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

热力图可视化展示

新建脚本cam_image.py,插入如下代码:

import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \ScoreCAM, \GradCAMPlusPlus, \AblationCAM, \XGradCAM, \EigenCAM, \EigenGradCAM, \LayerCAM, \FullGradfrom pytorch_grad_cam.utils.image import show_cam_on_image, \deprocess_image, \preprocess_imageimport timm
from torch.autograd import Variabledef reshape_transform_resmlp(tensor, height=14, width=14):result = tensor.reshape(tensor.size(0),height, width, tensor.size(2))result = result.transpose(2, 3).transpose(1, 2)return resultdef reshape_transform_swin(tensor, height=7, width=7):result = tensor.reshape(tensor.size(0),height, width, tensor.size(2))# Bring the channels to the first dimension,# like in CNNs.result = result.transpose(2, 3).transpose(1, 2)return resultdef reshape_transform_vit(tensor, height=14, width=14):result = tensor[:, 1:, :].reshape(tensor.size(0),height, width, tensor.size(2))# Bring the channels to the first dimension,# like in CNNs.result = result.transpose(2, 3).transpose(1, 2)return resultdef get_args():parser = argparse.ArgumentParser()parser.add_argument('--use-cuda', action='store_true', default=False,help='Use NVIDIA GPU acceleration')parser.add_argument('--image-path',type=str,default="./test/0bf7bfb05.png",help='Input image path')parser.add_argument('--output-image-path',type=str,default=None,help='Output image path')parser.add_argument('--models',type=str,default='emo',help='models name')parser.add_argument('--aug_smooth', action='store_true',help='Apply test time augmentation to smooth the CAM')parser.add_argument('--eigen_smooth',action='store_true',help='Reduce noise by taking the first principle componenet''of cam_weights*activations')parser.add_argument('--method', type=str, default='gradcam++',choices=['gradcam', 'gradcam++','scorecam', 'xgradcam','ablationcam', 'eigencam','eigengradcam', 'layercam', 'fullgrad'],help='Can be gradcam/gradcam++/scorecam/xgradcam''/ablationcam/eigencam/eigengradcam/layercam')args = parser.parse_args()args.use_cuda = args.use_cuda and torch.cuda.is_available()if args.use_cuda:print('Using GPU for acceleration')else:print('Using CPU for computation')return argsif __name__ == '__main__':args = get_args()methods = \{"gradcam": GradCAM,"scorecam": ScoreCAM,"gradcam++": GradCAMPlusPlus,"ablationcam": AblationCAM,"xgradcam": XGradCAM,"eigencam": EigenCAM,"eigengradcam": EigenGradCAM,"layercam": LayerCAM,"fullgrad": FullGrad}DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = torch.load('checkpoints/emo/best.pth', map_location='cpu')print(model)reshape_transform = None# print(models.stages[-1])if 'emo' in args.models:target_layers = [model.stage4[-1]]print(target_layers)model.eval()model.to(DEVICE)img_path = args.image_pathif args.image_path:img_path = args.image_pathelse:import requestsimage_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'img_path = image_url.split('/')[-1]if os.path.exists(img_path):img_data = requests.get(image_url).contentwith open(img_path, 'wb') as handler:handler.write(img_data)if args.output_image_path:save_name = args.output_image_pathelse:img_type = img_path.split('.')[-1]it_len = len(img_type)save_name = img_path.split('/')[-1][:-(it_len + 1)]save_name = save_name + '_' + args.models + '.' + img_typeimg = cv2.imread(img_path, 1)img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)if args.models == 'resize':cv2.imwrite(save_name, img)else:rgb_img = img[:, :, ::-1]rgb_img = np.float32(rgb_img) / 255input_tensor = Variable(preprocess_image(rgb_img,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)targets = Nonecam_algorithm = methods[args.method]with cam_algorithm(model=model,target_layers=target_layers,use_cuda=args.use_cuda,reshape_transform=reshape_transform,) as cam:cam.batch_size = 1grayscale_cam = cam(input_tensor=input_tensor,targets=targets,aug_smooth=args.aug_smooth,eigen_smooth=args.eigen_smooth)grayscale_cam = grayscale_cam[0, :]cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)cv2.imwrite(save_name, cam_image)

对get_args函数的参数进行设置:

  • use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。
  • image-path:待测图片的路径,这个是必填项。
  • model:必填项,默认值:mobilevig。
    效果如下图所示:
    在这里插入图片描述

完整的代码

完整的代码:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/88133994

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97335.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux 搭建 nexus maven私服

目录 环境&#xff1a; 下载 访问百度网盘链接 官网下载 部署 &#xff1a; 进入目录&#xff0c;创建文件夹,进入文件夹 将安装包放入nexus文件夹&#xff0c;并解压​编辑 启动 nexus,并查看状态.​编辑 更改 nexus 端口为7020,并重新启动&#xff0c;访问虚拟机7020…

【Java】智慧工地SaaS平台源码:AI/云计算/物联网/智慧监管

智慧工地是指运用信息化手段&#xff0c;围绕施工过程管理&#xff0c;建立互联协同、智能生产、科学管理的施工项目信息化生态圈&#xff0c;并将此数据在虚拟现实环境下与物联网采集到的工程信息进行数据挖掘分析&#xff0c;提供过程趋势预测及专家预案&#xff0c;实现工程…

〔011〕Stable Diffusion 之 解决绘制多人或面部很小的人物时面部崩坏问题 篇

✨ 目录 🎈 脸部崩坏🎈 下载脸部修复插件🎈 启用脸部修复插件🎈 插件生成效果🎈 插件功能详解🎈 脸部崩坏 相信很多人在画图时候,特别是画 有多个人物 图片或者 人物在图片中很小 的时候,都会很容易出现面部崩坏的问题这是由于神经网络无法完全捕捉人脸的微妙细节…

golang云原生项目之:etcd服务注册与发现

服务注册与发现&#xff1a;ETCD 1直接调包 kitex-contrib&#xff1a; 上面有实现的案例&#xff0c;直接cv。下面是具体的理解 2 相关概念 EtcdResolver: etcd resolver是一种DNS解析器&#xff0c;用于将域名转换为etcd集群中的具体地址&#xff0c;以便应用程序可以与et…

计算机视觉的应用11-基于pytorch框架的卷积神经网络与注意力机制对街道房屋号码的识别应用

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用11-基于pytorch框架的卷积神经网络与注意力机制对街道房屋号码的识别应用&#xff0c;本文我们借助PyTorch&#xff0c;快速构建和训练卷积神经网络&#xff08;CNN&#xff09;等模型&#xff0c;…

Google开源了可视化编程框架Visual Blocks for ML

Visual Blocks for ML是一个由Google开发的开源可视化编程框架。它使你能够在易于使用的无代码图形编辑器中创建ML管道。 为了运行Visual Blocks for ML。需要确保你的GPU是可以工作的。剩下的就是clone代码&#xff0c;然后运行&#xff0c;下面我们做一个简单的介绍&#xf…

FifthOne:计算机视觉提示和技巧

一、说明 欢迎来到我们每周的FiftyOne提示和技巧博客&#xff0c;我们回顾了最近在Slack&#xff0c;GitHub&#xff0c;Stack Overflow和Reddit上弹出的问题和答案。FiftyOne是一个开源机器学习工具集&#xff0c;使数据科学团队能够通过帮助他们策划高质量数据集、评估模型、…

图像处理常见的两种拉流方式

传统算法或者深度学习在进行图像处理之前&#xff0c;总是会首先进行图像的采集&#xff0c;也就是所谓的拉流。解决拉流的方式有两种&#xff0c;一个是直接使用opencv进行取流&#xff0c;另一个是使用ffmpeg进行取流&#xff0c;如下分别介绍这两种方式进行拉流处理。 1、o…

webSocket 聊天室 node.js 版

全局安装vue脚手架 npm install vue/cli -g 创建 vue3 ts 脚手架 vue create vue3-chatroom 后端代码 src 同级目录下建 server: const express require(express); const app express(); const http require(http); const server http.createServer(app);const io req…

云原生反模式

通过了解这些反模式并遵循云原生最佳实践&#xff0c;您可以设计、构建和运营更加强大、可扩展和成本效益高的云原生应用程序。 1.单体架构&#xff1a;在云上运行一个大而紧密耦合的应用程序&#xff0c;妨碍了可扩展性和敏捷性。2.忽略成本优化&#xff1a;云服务可能昂贵&am…

大数据课程K2——Spark的RDD弹性分布式数据集

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的RDD结构; ⚪ 掌握Spark的RDD操作方法; ⚪ 掌握Spark的RDD常用变换方法、常用执行方法; 一、Spark最核心的数据结构——RDD弹性分布式数据集 1. 概述 初学Spark时,把RDD看…

easyx图形库基础:3实现弹球小游戏

实现弹球小游戏 一.实现弹球小游戏:1.初始化布&#xff1a;2.初始化一个球的信息&#xff1a;3.球的移动和碰撞反弹4.底边挡板的绘制和移动碰撞重置数据。 二.整体代码&#xff1a; 一.实现弹球小游戏: 1.初始化布&#xff1a; int main() {initgraph(800, 600);setorigin(40…

麻辣烫数据可视化,麻辣烫市场将持续蓬勃发展

麻辣烫&#xff0c;这道源自中国的美食&#xff0c;早已成为人们生活中不可或缺的一部分。它独特的香辣口味&#xff0c;让人忍不住每每流连忘返。与人们的关系&#xff0c;简直如同挚友一般。每当寒冷的冬日或疲惫的时刻&#xff0c;麻辣烫总是悄然走进人们的心房&#xff0c;…

FreeCAD的傻瓜式初级使用教程

起因&#xff1a;自己想DIY一套线性手刹和序列档&#xff0c;以便和我之前的freejoy控制器相连接应用&#xff0c;需要自己制图和在某宝找代加工的商家&#xff0c;但我又不想安装体积巨大的AutoCAD&#xff0c;所以找了以下开源、免费的解决方案&#xff0c;所以就有了这篇文章…

使用PostgreSQL构建强大的Web应用程序:最佳实践和建议

PostgreSQL是一个功能强大的开源关系型数据库,它拥有广泛的用户群和活跃的开发社区。越来越多的Web应用选择PostgreSQL作为数据库 backend。如何充分利用PostgreSQL的特性来构建健壮、高性能的Web应用?本文将给出一些最佳实践和建议。 一、选择合适的PostgreSQL数据类型 Pos…

C# WPF 中 外部图标引入iconfont,无法正常显示问题 【小白记录】

wpf iconfont 外部图标引入&#xff0c;无法正常显示问题。 1. 检查资源路径和引入格式是否正确2. 检查资源是否包含在程序集中 1. 检查资源路径和引入格式是否正确 正确的格式&#xff0c;注意字体文件 “xxxx.ttf” 应写为 “#xxxx” <TextBlock Text"&#xe7ae;…

类之间的比较

作者简介&#xff1a; zoro-1&#xff0c;目前大一&#xff0c;正在学习Java&#xff0c;数据结构等 作者主页&#xff1a; zoro-1的主页 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f496; 类之间的比较 固定需求式比较器 固定需求式 通过…

【C语言】字符分类函数、字符转换函数、内存函数

前言 之前我们用两篇文章介绍了strlen、strcpy、stract、strcmp、strncpy、strncat、strncmp、strstr、strtok、streeror这些函数 第一篇文章strlen、strcpy、stract 第二篇文章strcmp、strncpy、strncat、strncmp 第三篇文章strstr、strtok、streeror 今天我们就来学习字…

ES 概念

es 概念 Elasticsearch是分布式实时搜索、实时分析、实时存储引擎&#xff0c;简称&#xff08;ES&#xff09;成立于2012年&#xff0c;是一家来自荷兰的、开源的大数据搜索、分析服务提供商&#xff0c;为企业提供实时搜索、数据分析服务&#xff0c;支持PB级的大数据。 -- …

HTML详解连载(8)

HTML详解连载&#xff08;8&#xff09; 专栏链接 [link](http://t.csdn.cn/xF0H3)下面进行专栏介绍 开始喽浮动-产品区域布局场景 解决方法清除浮动方法一&#xff1a;额外标签发方法二&#xff1a;单伪元素法方法三&#xff1a;双伪元素法方法四&#xff1a;overflow浮动-总结…