classification
如上图所示,由于直接export出的onnx文件有两个输出节点,不方便处理,所以编写脚本删除不需要的输出节点193:
import onnxonnx_model = onnx.load("cls.onnx")
graph = onnx_model.graphinputs = graph.input
for input in inputs:print('input',input.name)outputs = graph.output
for output in outputs:print('output',output.name)graph.output.remove(outputs[1])
onnx.save(onnx_model, 'cls_modified.onnx')
C++推理代码:
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvOnnxParser.h>const int point_num = 1024;void pc_normalize(std::vector<float>& points)
{float mean_x = 0, mean_y = 0, mean_z = 0;for (size_t i = 0; i < point_num; ++i){mean_x += points[3 * i];mean_y += points[3 * i + 1];mean_z += points[3 * i + 2];}mean_x /= point_num;mean_y /= point_num;mean_z /= point_num;for (size_t i = 0; i < point_num; ++i){points[3 * i] -= mean_x;points[3 * i + 1] -= mean_y;points[3 * i + 2] -= mean_z;}float m = 0;for (size_t i = 0; i < point_num; ++i){if (sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2)) > m)m = sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2));}for (size_t i = 0; i < point_num; ++i){points[3 * i] /= m;points[3 * i + 1] /= m;points[3 * i + 2] /= m;}
}class TRTLogger : public nvinfer1::ILogger
{
public:virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override{if (severity <= Severity::kINFO) printf(msg);}
} logger;std::vector<unsigned char> load_file(const std::string& file)
{std::ifstream in(file, std::ios::in | std::ios::binary);if (!in.is_open())return {};in.seekg(0, std::ios::end);size_t length = in.tellg();std::vector<uint8_t> data;if (length > 0) {in.seekg(0, std::ios::beg);data.resize(length);in.read((char*)& data[0], length);}in.close();return data;
}void classfier(std::vector<float> & points)
{TRTLogger logger;nvinfer1::ICudaEngine* engine;//#define BUILD_ENGINE#ifdef BUILD_ENGINEnvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();nvinfer1::INetworkDefinition* network = builder->createNetworkV2(1);nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, logger);if (!parser->parseFromFile("cls_modified.onnx", 1)){printf("Failed to parser onnx\n");return;}int maxBatchSize = 1;config->setMaxWorkspaceSize(1 << 32);engine = builder->buildEngineWithConfig(*network, *config);if (engine == nullptr) {printf("Build engine failed.\n");return;}nvinfer1::IHostMemory* model_data = engine->serialize();FILE* f = fopen("cls.engine", "wb");fwrite(model_data->data(), 1, model_data->size(), f);fclose(f);model_data->destroy();parser->destroy();engine->destroy();network->destroy();config->destroy();builder->destroy();
#endif auto engine_data = load_file("cls.engine");nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(logger);engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());if (engine == nullptr){printf("Deserialize cuda engine failed.\n");runtime->destroy();return;}nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();cudaStream_t stream = nullptr;cudaStreamCreate(&stream);float* input_data_host = nullptr;const size_t input_numel = 1 * 3 * point_num;cudaMallocHost(&input_data_host, input_numel * sizeof(float));for (size_t i = 0; i < 3; i++){for (size_t j = 0; j < point_num; j++){input_data_host[point_num * i + j] = points[3 * j + i];}}float* input_data_device = nullptr;float output_data_host[10];float* output_data_device = nullptr;cudaMalloc(&input_data_device, input_numel * sizeof(float));cudaMalloc(&output_data_device, sizeof(output_data_host));cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float), cudaMemcpyHostToDevice, stream);float* bindings[] = { input_data_device, output_data_device };bool success = execution_context->enqueueV2((void**)bindings, stream, nullptr);cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);cudaStreamSynchronize(stream);int predict_label = std::max_element(output_data_host, output_data_host + 10) - output_data_host;std::cout << "\npredict_label: " << predict_label << std::endl;cudaStreamDestroy(stream);execution_context->destroy();engine->destroy();runtime->destroy();
}int main()
{std::vector<float> points;std::ifstream infile;float x, y, z, nx, ny, nz;char ch;infile.open("bed_0610.txt");for (size_t i = 0; i < point_num; i++){infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;points.push_back(x);points.push_back(y);points.push_back(z);}infile.close();pc_normalize(points);classfier(points);return 0;
}
其中推理引擎的构建也可以直接使用tensorrt的bin目录下的trtexec.exe。
LZ也实现了cuda版本的前处理代码,但似乎效率比cpu前处理还低。可能是数据量不够大吧(才10^3数量级),而且目前LZ的cuda水平也只是入门阶段…
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvOnnxParser.h>const int point_num = 1024;
const int thread_num = 1024;
const int block_num = 1;__global__ void array_sum(float* data, float* val, int N)
{__shared__ double share_dTemp[thread_num];const int nStep = gridDim.x * blockDim.x;const int tid = blockIdx.x * blockDim.x + threadIdx.x;double dTempSum = 0.0;for (int i = tid; i < N; i += nStep){dTempSum += data[i];}share_dTemp[threadIdx.x] = dTempSum;__syncthreads();for (int i = blockDim.x / 2; i != 0; i /= 2){if (threadIdx.x < i){share_dTemp[threadIdx.x] += share_dTemp[threadIdx.x + i];}__syncthreads();}if (0 == threadIdx.x){atomicAdd(val, share_dTemp[0]);}
}__global__ void array_sub(float* data, float val, int N)
{const int tid = blockIdx.x * blockDim.x + threadIdx.x;const int nStep = blockDim.x * gridDim.x;for (int i = tid; i < N; i += nStep){data[i] = data[i] - val;}
}__global__ void array_L2(float* in, float* out, int N)
{const int tid = blockIdx.x * blockDim.x + threadIdx.x;const int nStep = blockDim.x * gridDim.x;for (int i = tid; i < N; i += nStep){out[i] = sqrt(pow(in[i], 2) + pow(in[i + N], 2) + pow(in[i + 2 * N], 2));}
}__global__ void array_max(float* mem, int numbers)
{int tid = threadIdx.x;int idof = blockIdx.x * blockDim.x;int idx = tid + idof;extern __shared__ float tep[];if (idx >= numbers) return;tep[tid] = mem[idx];unsigned int bi = 0;for (int s = 1; s < blockDim.x; s = (s << 1)){unsigned int kid = tid << (bi + 1);if ((kid + s) >= blockDim.x || (idof + kid + s) >= numbers) break;tep[kid] = tep[kid] > tep[kid + s] ? tep[kid] : tep[kid + s];++bi;__syncthreads();}if (tid == 0) {mem[blockIdx.x] = tep[0];}
}__global__ void array_div(float* data, float val, int N)
{const int tid = blockIdx.x * blockDim.x + threadIdx.x;const int nStep = blockDim.x * gridDim.x;for (int i = tid; i < N; i += nStep){data[i] = data[i] / val;}
}void pc_normalize_gpu(float* points)
{float *mean_x = NULL, *mean_y = NULL, *mean_z = NULL;cudaMalloc((void**)& mean_x, sizeof(float));cudaMalloc((void**)& mean_y, sizeof(float));cudaMalloc((void**)& mean_z, sizeof(float));array_sum << <thread_num, block_num >> > (points + 0 * point_num, mean_x, point_num);array_sum << <thread_num, block_num >> > (points + 1 * point_num, mean_y, point_num);array_sum << <thread_num, block_num >> > (points + 2 * point_num, mean_z, point_num);float mx, my, mz;cudaMemcpy(&mx, mean_x, sizeof(float), cudaMemcpyDeviceToHost);cudaMemcpy(&my, mean_y, sizeof(float), cudaMemcpyDeviceToHost);cudaMemcpy(&mz, mean_z, sizeof(float), cudaMemcpyDeviceToHost);array_sub << <thread_num, block_num >> > (points + 0 * point_num, mx / point_num, point_num);array_sub << <thread_num, block_num >> > (points + 1 * point_num, my / point_num, point_num);array_sub << <thread_num, block_num >> > (points + 2 * point_num, mz / point_num, point_num);//float* pts = (float*)malloc(sizeof(float) * point_num);//cudaMemcpy(pts, points, sizeof(float) * point_num, cudaMemcpyDeviceToHost);//for (size_t i = 0; i < point_num; i++)//{// std::cout << pts[i] << std::endl;//}float* L2 = NULL;cudaMalloc((void**)& L2, sizeof(float) * point_num);array_L2 << <thread_num, block_num >> > (points, L2, point_num);//float* l2 = (float*)malloc(sizeof(float) * point_num);//cudaMemcpy(l2, L2, sizeof(float) * point_num, cudaMemcpyDeviceToHost);//for (size_t i = 0; i < point_num; i++)//{// std::cout << l2[i] << std::endl;//}int tmp_num = point_num;int share_size = sizeof(float) * thread_num;int block_num = (tmp_num + thread_num - 1) / thread_num;do {array_max << <block_num, thread_num, share_size >> > (L2, thread_num);tmp_num = block_num;block_num = (tmp_num + thread_num - 1) / thread_num;} while (tmp_num > 1);float max;cudaMemcpy(&max, L2, sizeof(float), cudaMemcpyDeviceToHost);//std::cout << max << std::endl;array_div << <thread_num, block_num >> > (points + 0 * point_num, max, point_num);array_div << <thread_num, block_num >> > (points + 1 * point_num, max, point_num);array_div << <thread_num, block_num >> > (points + 2 * point_num, max, point_num);}class TRTLogger : public nvinfer1::ILogger
{
public:virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override{if (severity <= Severity::kINFO) printf(msg);}
} logger;std::vector<unsigned char> load_file(const std::string& file)
{std::ifstream in(file, std::ios::in | std::ios::binary);if (!in.is_open())return {};in.seekg(0, std::ios::end);size_t length = in.tellg();std::vector<uint8_t> data;if (length > 0) {in.seekg(0, std::ios::beg);data.resize(length);in.read((char*)& data[0], length);}in.close();return data;
}void classfier(std::vector<float> & points)
{TRTLogger logger;nvinfer1::ICudaEngine* engine;//#define BUILD_ENGINE#ifdef BUILD_ENGINEnvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();nvinfer1::INetworkDefinition* network = builder->createNetworkV2(1);nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, logger);if (!parser->parseFromFile("cls_modified.onnx", 1)){printf("Failed to parser onnx\n");return;}int maxBatchSize = 1;config->setMaxWorkspaceSize(1 << 32);engine = builder->buildEngineWithConfig(*network, *config);if (engine == nullptr) {printf("Build engine failed.\n");return;}nvinfer1::IHostMemory* model_data = engine->serialize();FILE* f = fopen("cls.engine", "wb");fwrite(model_data->data(), 1, model_data->size(), f);fclose(f);model_data->destroy();parser->destroy();engine->destroy();network->destroy();config->destroy();builder->destroy();
#endif auto engine_data = load_file("cls.engine");nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(logger);engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());if (engine == nullptr){printf("Deserialize cuda engine failed.\n");runtime->destroy();return;}nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();cudaStream_t stream = nullptr;cudaStreamCreate(&stream);float* input_data_host = nullptr;const size_t input_numel = 1 * 3 * point_num;cudaMallocHost(&input_data_host, input_numel * sizeof(float));for (size_t i = 0; i < 3; i++){for (size_t j = 0; j < point_num; j++){input_data_host[point_num * i + j] = points[3 * j + i];}}float* input_data_device = nullptr;float output_data_host[10];float* output_data_device = nullptr;cudaMalloc(&input_data_device, input_numel * sizeof(float));cudaMalloc(&output_data_device, sizeof(output_data_host));cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float), cudaMemcpyHostToDevice, stream);pc_normalize_gpu(input_data_device);float* bindings[] = { input_data_device, output_data_device };bool success = execution_context->enqueueV2((void**)bindings, stream, nullptr);cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);cudaStreamSynchronize(stream);int predict_label = std::max_element(output_data_host, output_data_host + 10) - output_data_host;std::cout << "\npredict_label: " << predict_label << std::endl;cudaStreamDestroy(stream);execution_context->destroy();engine->destroy();runtime->destroy();
}int main()
{std::vector<float> points;std::ifstream infile;float x, y, z, nx, ny, nz;char ch;infile.open("sofa_0020.txt");for (size_t i = 0; i < point_num; i++){infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;points.push_back(x);points.push_back(y);points.push_back(z);}infile.close();classfier(points);return 0;
}