在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明

本文介绍了如何在Visual Studio上,使用OpenCV来实现人脸识别的功能

环境说明 :

  • 操作系统 : windows 10 64位
  • Visual Studio版本 : Visual Studio Community 2022 (社区版)
  • OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版)

实现效果如图所示,识别到的人脸会用红框框出来 :

在这里插入图片描述

2. 配置Visual Studio环境

这部分详见我的另一篇博客 : Visual Studio 2022 cmake配置opencv开发环境

最终配置好后,能够在Visual Studio中正常调用OpenCV,运行CMake项目(C++程序)
在这里插入图片描述

3. 实现摄像头预览

这部分要用到VideoCapture这个类,VideoCapture既支持从视频文件读取,也支持直接从摄像机等监控器中读取,还可以读取 IP 视频流,要想获取视频需要先创建一个 VideoCapture 对象来打开相机,然后就可以来操作视频帧了。

我们将项目代码修改为如下内容

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{VideoCapture capture;//打开相机,这个传入的相机ID为0capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}//Mat矩阵,用来存一张图片Mat frame;while (true){//从capture中取数据,将画面输出到frame矩阵里面capture >> frame; if (frame.empty()){cout << "读取摄像头数据失败\n" << endl;}imshow("摄像头", frame); //显示图像if (waitKey(30) == 27) //按下ESC键退出程序{break;}}return 0;
}

运行程序,效果如下所示

在这里插入图片描述

4. 转化为灰度图像

接下来我们需要将图片转化为灰度图,为什么要进行灰度化处理呢 ? 主要有以下几个作用,提高人脸识别的准确性和可靠性

  • 简化图像处理:灰度化可以将彩色图像转化为黑白图像,使得处理更加简单。彩色图像包含三个通道(红、绿、蓝),而灰度图像只有一个通道,使得处理更加快速和高效。
  • 消除颜色信息:人脸识别对于颜色信息并不是非常敏感,而更关注形状和轮廓等特征。因此,通过灰度化处理,可以消除颜色信息对于后续处理的影响。
  • 提高处理性能:灰度化处理可以减少计算量,提高处理性能。在人脸识别过程中,对每个像素进行颜色计算会消耗大量计算资源,而灰度化处理只需要对每个像素的亮度进行计算,减少了计算量。
  • 突出图像特征:灰度化处理可以突出图像中的边缘和纹理等特征。这些特征对于人脸识别非常关键,可以帮助算法更好地识别人脸。

进行灰度化处理我们需要调用void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );,这里src是我们输入的图像,dst是我们要输出的图像,code需要传COLOR_BGR2GRAY,表示将BGR转化为灰度图。

要注意,在OpenCV中,是BGR排列方式,而不是RGB排列。

具体完整代码如下

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像while (true){//从capture中取数据,将画面输出到frame矩阵里面capture >> frame; if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;return -1;}imshow("摄像头", frame); //显示彩色图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRGimshow("灰度化", grayFrame); //显示灰色图像if (waitKey(30) == 27) //ESC键{break;}}return 0;
}

运行程序,效果如下所示,左边的是彩色画面,右边的是黑白画面

在这里插入图片描述

5. 直方图均衡化处理

接着,要进行直方图均衡化处理,为什么要进行这一步操作呢 ? 主要有以下几个作用,提高人脸识别的准确性和可靠性

  • 提高对比度:直方图均衡化通过重新分布图像像素的灰度级,将原始图像中的灰度级分布变得更加均匀。这样做可以增强图像的对比度,使得人脸的特征更加清晰可见。
  • 消除光照变化:人脸识别中的一个挑战是光照变化对人脸图像的影响。直方图均衡化可以消除光照变化,使得人脸图像在不同光照条件下具有一致的亮度和对比度。
  • 提高图像质量:直方图均衡化可以改善图像的质量,去除图像中的噪声和伪影。这对于后续的人脸特征提取和匹配非常重要,可以提高人脸识别的准确性和鲁棒性。
  • 增强细节信息:直方图均衡化可以增强图像的细节信息,使得人脸图像中的纹理和特征更加明显。这对于人脸识别算法的性能至关重要,可以提高人脸识别的准确率和鲁棒性。

直方图均衡化处理需要调用void equalizeHist( InputArray src, OutputArray dst);src是输入的图像,需要是单通道的灰度图,dst是我们输出的图像。

具体完整代码如下

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像Mat equalizeFrame; //直方图while (true){capture >> frame; //从capture中取数据,将画面输出到frame矩阵里面if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;return -1;}imshow("摄像头", frame); //显示图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRGimshow("灰度化", grayFrame); //显示图像//直方图均衡化,用来增强图像对比度,从而让轮廓更加明显equalizeHist(grayFrame, equalizeFrame);imshow("直方图", equalizeFrame);if (waitKey(30) == 27) //ESC键{break;}}return 0;
}

运行程序,效果如下所示,最右边的是经过直方图均衡化处理后的
在这里插入图片描述

6. 加载级联分类器

级联分类器CascadeClassifier的作用是进行目标检测。它是一种基于机器学习的分类器,通过训练多个弱分类器来识别目标物体。这些弱分类器层层级联,形成一个级联分类器,能够快速准确地检测出图像中的目标物体。

级联分类器通常用于人脸检测,可以通过训练来识别人的面部特征,如眼睛、鼻子、嘴巴等,从而识别人脸并定位人脸的位置。在OpenCV中,CascadeClassifier类提供了一个方便的接口,可以加载预训练的级联分类器,并进行目标检测操作。

首先我们要去加载级联分类器文件(xml文件),这些文件位于D:\Developer\opencv4.8.0\opencv\build\etc目录下,这里我们用的是haarcascade这种基于梯度提升决策树的分类器 (另一种lbpcascade是一种基于局部二值模式LBP的分类器)

haarcascade目录下,我们可以看到haarcascade_frontalface_alt.xml这个文件,就是我们需要的,用于人脸识别的级联分类器了。
在这里插入图片描述
所以,我们加载级联分类器的时候,去指定这个路径D:\Developer\opencv4.8.0\opencv\build\etc\haarcascades\haarcascade_frontalface_alt.xml,需要注意的是,放到代码里,这里的要将\改为/ (或者改为\\也行)。如果不改,那么路径不对,级联分类器会读取出错。

具体代码如下

int main()
{CascadeClassifier face_CascadeClassifier;if (!face_CascadeClassifier.load("D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml")) {cout << "级联分类器加载失败!\n" << endl;return -1;}//这里省略了原本其他的代码 ...
}

7. 进行人脸检测

接下来我们就要进行人脸检测了,人脸检测需要调用detectMultiScale方法,第一个参数 image 需要传入我们刚才处理后的直方图,第二个参数objects会返回所有检测出来的人脸的坐标。

void detectMultiScale( InputArray image,CV_OUT std::vector<Rect>& objects,double scaleFactor = 1.1,int minNeighbors = 3, int flags = 0,Size minSize = Size(),Size maxSize = Size() );

还有一个rectangle方法,用来在得到人脸坐标之后,进行画框。第一个参数img代表要在哪个图像上画框,第二个参数rec表示框的坐标,第三个参数color表示画框的颜色。

void rectangle(InputOutputArray img, Rect rec,const Scalar& color, int thickness = 1,int lineType = LINE_8, int shift = 0);

主要代码如下所示

std::vector<Rect> faces;
face_CascadeClassifier.detectMultiScale(grayFrame, faces);  //检测人脸for (size_t i = 0; i < faces.size(); i++)
{rectangle(frame,faces[i],Scalar(0,0,255)); //在人脸的位置画红色的框
}

来看一下完整代码

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;int main()
{//加载级联分类器CascadeClassifier face_CascadeClassifier;if (!face_CascadeClassifier.load("D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml")) {cout << "级联分类器加载失败!\n" << endl;return -1;}VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像Mat equalizeFrame; //直方图while (true){capture >> frame; //从capture中取数据,将画面输出到frame矩阵里面if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;}//imshow("摄像头", frame); //显示图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRG//imshow("灰度化", grayFrame); //显示图像//直方图均衡化,用来增强图像对比度,从而让轮廓更加明显equalizeHist(grayFrame, equalizeFrame);//imshow("直方图", equalizeFrame);std::vector<Rect> faces;face_CascadeClassifier.detectMultiScale(grayFrame, faces);  //检测人脸for (size_t i = 0; i < faces.size(); i++){rectangle(frame,faces[i],Scalar(0,0,255));}imshow("摄像头", frame); //显示图像if (waitKey(30) == 27) //ESC键{break;}}return 0;
}

运行程序,来看一下效果

可以看到,人脸已经检测出来了,并对人脸进行了画框。但是可以画面非常的卡顿,因为人脸检测是非常耗时的,可能需要500毫秒甚至1-2秒时间,这里每一帧都去检测人脸,导致了异常卡顿。所以这种方式只适合用来检测静态图像,并不适合用作实时的摄像头人脸跟踪检测。

8. 实现实时人脸跟踪检测

8.1 OpenCV Android Demo

那我们需要来怎么做呢 ? 其实我们可以来看一下官方的示例,我们要去下载官方的Android包,里面有Android的官方示例。

在这里插入图片描述

8.2 DetectionBasedTracker_jni.cpp

我们下载解压后,可以在OpenCV-android-sdk\samples\face-detection\jni目录下找到DetectionBasedTracker_jni.cpp这个文件
在这里插入图片描述
在里面的nativeCreateObject方法里,我们可以发现其调用了这几句代码
在这里插入图片描述

8.3 CascadeDetectorAdapter

CascadeDetectorAdapter是一个适配器类,用于将CascadeClassifierDetector接口适配起来,从而用于检测人脸。

再来看一下CascadeDetectorAdapter这个类,里面的detect方法就是用来检测人脸的
在这里插入图片描述

8.4 DetectorAgregator

然后来看一下第三行代码中的DetectorAgregator,这里面有tracker = makePtr<DetectionBasedTracker>(mainDetector, trackingDetector, DetectorParams);这行代码是我们需要的,用来传入mainDetectortrackingDetector,生成一个tracker对象。
在这里插入图片描述

8.5 开始重新编写代码

这里我们将原来写的人脸检测的代码删除了,代码恢复到了刚配置好OpenCV的初始状态,然后将CascadeDetectorAdapter这个类的代码复制到我们的项目中

class CascadeDetectorAdapter: public DetectionBasedTracker::IDetector
{
public:CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):IDetector(),Detector(detector){CV_Assert(detector);}void detect(const cv::Mat &Image, std::vector<cv::Rect> &objects){Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);}virtual ~CascadeDetectorAdapter(){}private:CascadeDetectorAdapter();cv::Ptr<cv::CascadeClassifier> Detector;
};

声明 tracker这个对象。

cv::Ptr<DetectionBasedTracker> tracker;

然后创建tracker,并调用run()方法,会启动一个异步线程,后面的人脸检测会在这个异步线程进行检测了。

string stdFileName = "D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml";
//创建一个主检测适配器
cv::Ptr<CascadeDetectorAdapter> mainDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));
//创建一个跟踪检测适配器
cv::Ptr<CascadeDetectorAdapter> trackingDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));
//创建跟踪器
DetectionBasedTracker::Parameters DetectorParams;
tracker = makePtr<DetectionBasedTracker>(mainDetector, trackingDetector, DetectorParams);
tracker->run();

然后在人脸检测的使用调用tracker->process(grayFrame);进行人脸检测,并调用tracker->getObjects(faces);获得识别出来的人脸。

tracker->process(grayFrame);
tracker->getObjects(faces);

核心代码就是如上所示,接下来我们再来看一下完整的代码

#include "OpenCVTest.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;class CascadeDetectorAdapter : public DetectionBasedTracker::IDetector
{
public:CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector) :IDetector(),Detector(detector){CV_Assert(detector);}void detect(const cv::Mat& Image, std::vector<cv::Rect>& objects){Detector->detectMultiScale(Image, objects, scaleFactor, minNeighbours, 0, minObjSize, maxObjSize);}virtual ~CascadeDetectorAdapter(){}private:CascadeDetectorAdapter();cv::Ptr<cv::CascadeClassifier> Detector;
};cv::Ptr<DetectionBasedTracker> tracker;int main()
{string stdFileName = "D:/Developer/opencv4.8.0/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml";//创建一个主检测适配器cv::Ptr<CascadeDetectorAdapter> mainDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));//创建一个跟踪检测适配器cv::Ptr<CascadeDetectorAdapter> trackingDetector = makePtr<CascadeDetectorAdapter>(makePtr<CascadeClassifier>(stdFileName));//创建跟踪器DetectionBasedTracker::Parameters DetectorParams;tracker = makePtr<DetectionBasedTracker>(mainDetector, trackingDetector, DetectorParams);tracker->run();VideoCapture capture;capture.open(0);if (!capture.isOpened()){cout << "opencv打开摄像头失败!\n" << endl;return -1;}Mat frame; //摄像头彩色图像Mat grayFrame; //摄像头灰度图像Mat equalizeFrame; //直方图while (true){capture >> frame; //从capture中取数据,将画面输出到frame矩阵里面if (frame.empty()){cout << "读取摄像头数据失败!\n" << endl;return -1;}//imshow("摄像头", frame); //显示图像//灰度化处理cvtColor(frame, grayFrame, COLOR_BGR2GRAY); //注意 : OpenCV中是BRG//imshow("灰度化", grayFrame); //显示图像//直方图均衡化,用来增强图像对比度,从而让轮廓更加明显equalizeHist(grayFrame, equalizeFrame);//imshow("直方图", equalizeFrame);std::vector<Rect>  faces;tracker->process(grayFrame);tracker->getObjects(faces);for (size_t i = 0; i < faces.size(); i++){rectangle(frame, faces[i], Scalar(0, 0, 255));}imshow("摄像头", frame); //显示图像if (waitKey(30) == 27) //ESC键{break;}}tracker->stop();return 0;
}

8.6 运行效果

运行程序,我们就可以看到本文开头给出的效果了

在这里插入图片描述
至此,我们就使用OpenCV完成实时人脸跟踪识别了。

9. 本文源码下载

使用OpenCV实现人脸识别示例Demo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97522.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系统卡死问题分析

CPU模式 CPU Frequency Scaling (CPUFREQ) Introduction CPU频率调节设备驱动程序的功能。该驱动程序允许在运行过程中更改CPU的时钟频率。一旦CPU频率被更改,必要的电源供应电压也会根据设备树脚本(DTS)中定义的电压值进行变化。通过降低时钟速度,这种方法可以减少功耗…

CloudCompare——统计滤波

目录 1.统计滤波2.软件实现3.完整操作4.算法源码5.相关代码 本文由CSDN点云侠原创&#xff0c;CloudCompare——统计滤波&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫。 1.统计滤波 算法原理见&#xff1a;PCL 统计滤波器…

使用 Elasticsearch 轻松进行中文文本分类

本文记录下使用 Elasticsearch 进行文本分类&#xff0c;当我第一次偶然发现 Elasticsearch 时&#xff0c;就被它的易用性、速度和配置选项所吸引。每次使用 Elasticsearch&#xff0c;我都能找到一种更为简单的方法来解决我一贯通过传统的自然语言处理 (NLP) 工具和技术来解决…

韩顺平Linux 四十四--

四十四、rwx权限 权限的基本介绍 输入指令 ls -l 显示的内容如下 -rwxrw-r-- 1 root 1213 Feb 2 09:39 abc0-9位说明 第0位确定文件类型&#xff08;d , - , l , c , b) l 是链接&#xff0c;相当于 windows 的快捷方式- 代表是文件是普通文件d 是目录&#xff0c;相…

录制游戏视频的软件有哪些?分享3款软件!

“有录制游戏视频的软件推荐吗&#xff1f;最近迷上了网游&#xff0c;想录制点自己高端操作的游戏画面&#xff0c;但是不知道用什么软件录屏比较好&#xff0c;就想问问大家&#xff0c;有没有好用的录制游戏视频软件。” 在游戏领域&#xff0c;玩家们喜欢通过录制游戏视频…

《Go 语言第一课》课程学习笔记(四)

构建模式&#xff1a;Go Module 的 6 类常规操作 为当前 module 添加一个依赖 我们如何为一个 Go Module 添加一个新的依赖包呢&#xff1f; 如果我们要为项目增加一个新依赖&#xff1a;github.com/google/uuid&#xff0c;我们首先会更新源码&#xff1a;package mainimpor…

【3D激光SLAM】LOAM源代码解析--scanRegistration.cpp

系列文章目录 【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp 写在前面 本系列文章将对LOAM源代码进行讲解&#xff0c;在讲解过程中&#xff0c;涉及到论文中提到的部分&#xff0c;会结合论文以及我自己的理解进行解读&#xff0c;尤其是对于其中坐标变换的部分&…

更多openEuler镜像加入AWS Marketplace!

自2023年7月openEuler 22.03 LTS SP1正式登陆AWS Marketplace后&#xff0c;openEuler社区一直持续于在AWS上提供更多版本。 目前&#xff0c;openEuler22.03 LTS SP1 ,SP2两个版本及 x86 arm64两种架构的四个镜像均可通过AWS对外提供&#xff0c;且在亚太及欧洲15个Region开放…

【数据结构】吃透单链表!!!(详细解析~)

目录 前言&#xff1a;一.顺序表的缺陷 && 介绍链表1.顺序表的缺陷2.介绍链表&#xff08;1&#xff09;链表的概念&#xff08;2&#xff09;链表的结构&#xff08;3&#xff09;链表的功能 二.单链表的实现1.创建节点的结构2.头文件函数的声明3.函数的实现&#xff…

第十五章:联邦学习攻防实战

代码 联邦学习的后门攻击案例 联邦学习的模型压缩案例 联邦学习的差分隐私案例 联邦学习的同态加密案例 联邦学习的参数稀疏化案例

EndNote-文献管理工具【安装篇】

下载&#xff1a;&#xff08;文末附安装包&#xff0c;建议使用这一个&#xff0c;官网都需要付费&#xff09; 打开安装包&#xff0c;双击&#xff1a; 安装完了之后不要直接运行&#xff0c;因为EndNote软件少了一个类型的软件&#xff1a;GB/T17714。 因此我们需要把这个…

VBA技术资料MF45:VBA_在Excel中自定义行高

【分享成果&#xff0c;随喜正能量】可以不光芒万丈&#xff0c;但不要停止发光。有的人陷入困境&#xff0c;不是被人所困&#xff0c;而是自己束缚自己&#xff0c;这时"解铃还须系铃人"&#xff0c;如果自己无法放下&#xff0c;如何能脱困&#xff1f; 。 我给V…

Liunx系统编程:进程信号的概念及产生方式

目录 一. 进程信号概述 1.1 生活中的信号 1.2 进程信号 1.3 信号的查看 二. 信号发送的本质 三. 信号产生的四种方式 3.1 按键产生信号 3.2 通过系统接口发送信号 3.2.1 kill -- 向指定进程发送信号 3.2.2 raise -- 当自身发送信号 3.2.3 abort -- 向自身发送进程终止…

verilog学习笔记6——锁存器和触发器

文章目录 前言一、锁存器1、基本SR锁存器——或非门实现2、基本SR锁存器——与非门实现3、门控SR锁存器4、门控D锁存器 二、触发器1、 电平触发的RS触发器/同步SR触发器2、电平触发的D触发器/D型锁存器3、边沿触发的D触发器4、脉冲触发的RS触发器 三、边沿触发、脉冲触发、电平…

【C# 基础精讲】LINQ to XML查询

LINQ to XML 是 C# 中用于查询和操作 XML 数据的强大工具。它允许您使用 LINQ 查询语法对 XML 文档进行查询、过滤、投影等操作&#xff0c;从而更加方便地处理 XML 数据。本文将详细介绍 LINQ to XML 的基本概念、常见操作以及示例&#xff0c;帮助您了解如何在 C# 中使用 LIN…

智能数据建模软件DTEmpower 2023R2新版本功能介绍

DTEmpower是由天洑软件自主研发的一款通用的智能数据建模软件&#xff0c;致力于帮助工程师及工科专业学生&#xff0c;利用工业领域中的仿真、试验、测量等各类数据进行挖掘分析&#xff0c;建立高质量的数据模型&#xff0c;实现快速设计评估、实时仿真预测、系统参数预警、设…

Verilog同步FIFO设计

同步FIFO(synchronous)的写时钟和读时钟为同一个时钟&#xff0c;FIFO内部所有逻辑都是同步逻辑&#xff0c;常常用于交互数据缓冲。 异步FIFO&#xff1a;数据写入FIFO的时钟和数据读出FIFO的时钟是异步的(asynchronous) 典型同步FIFO有三部分组成: &#xff08;1&#xff0…

arm:day4

1. 实现三盏灯的点亮 .text .global _start_start: led1初始化函数LED_INIT: 1 通过RCC_AHB4_ENSETR寄存器&#xff0c;设置GPIOE F组控制器使能 0x50000A28[5:4]1ldr r0,0X50000A28ldr r1,[r0]orr r1,r1,#(0X3<<4)str r1,[r0] 2.1 通过GPIOE_MODER寄存器&#xff0c;…

史上最简洁实用人工神经元网络c++编写202301

这是史上最简单、清晰…… C语言编写的 带正向传播、反向传播(Forward ……和Back Propagation&#xff09;……任意Nodes数的人工神经元神经网络……。 大一学生、甚至中学生可以读懂。 适合于&#xff0c;没学过高数的程序员……照猫画虎编写人工智能、深度学习之神经网络……

plt绘制箱型图+散点图

import numpy as np import matplotlib.pyplot as plt# 创建示例数据 np.random.seed(1) data [np.random.normal(0, std, 100) for std in range(1, 4)]# 绘制箱型图 plt.boxplot(data, patch_artistTrue,zorder0)# 添加数据点的散点图&#xff0c;并设置参数以避免重叠 for …