李沐pytorch学习-经典CNN的原理及代码实现

一、LeNet

1.1 模型结构

        LeNet结构如图1所示,汇聚层即池化层,这里池化Stride(步幅)与池化层长宽一致,因此使得池化后大小减半。

图1. LeNet结构

1.2 代码实现

       代码实现如下:

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10))
        nn.Sequential 即表示把括号里的层按序排起来,代码与每层的对应关系如图2所示。
图2. 代码与LeNet结构中每层的对应关系
        nn.Flatten() 作用是将16@5×5的汇聚层展平程1维向量,作为全连接层的输入,因此不对应图中的某层。
        nn.Conv2d(1, 6, kernel_size=5, padding=2) 为卷积层,表示输入的通道数为1,输出的通道数为6,直观表达是经过该层后数据变“厚”了,卷积核大小为5×5,上下左右均填充2行(填充0)。nn.Sigmoid()表示该层的激活函数为Sigmoid。
        nn.AvgPool2d(kernel_size=2, stride=2) 表示平均池化,池化层大小为2×2,步幅为2。
        nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid() 为卷积层,四周无填充,激活函数为Sigmoid。
        nn.AvgPool2d(kernel_size=2, stride=2) 为平均池化层。
        nn.Linear(16 * 5 * 5, 120), nn.Sigmoid() 为线性全连接层,输入层神经元数为16×5×5,输出层神经元数为120,无隐含层,激活函数为Sigmoid。
        nn.Linear(120, 84), nn.Sigmoid() 为线性全连接层,输入层神经元数为120,输出层神经元数为84,无隐含层,激活函数为Sigmoid。
        nn.Linear(84, 10) 为线性全连接层,输入层神经元数为84,输出层神经元数为10,无隐含层,无激活函数。

1.3 检查模型

        查看输出层的名及Size。

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10))X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape: \t',X.shape)# 输出如下:
Conv2d output shape: torch.Size([1, 6, 28, 28])
Sigmoid output shape: torch.Size([1, 6, 28, 28])
AvgPool2d output shape: torch.Size([1, 6, 14, 14])
Conv2d output shape: torch.Size([1, 16, 10, 10])
Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5])
Flatten output shape: torch.Size([1, 400])

1.4 训练模型

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10))batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)def evaluate_accuracy_gpu(net, data_iter, device=None): #@save"""使用GPU计算模型在数据集上的精度"""if isinstance(net, nn.Module):net.eval() # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需的(之后将介绍)X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型(在第六章定义)"""def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)l.backward()optimizer.step()with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_l = metric[0] / metric[2]train_acc = metric[1] / metric[2]if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')# 开始训练
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

二、AlexNet

2.1 模型简介

AlexNet赢了2012年ImageNet比赛

是个更深更大的LeNet

相对LeNet主要改进:

        ∷ ReLu作为激活函数,减缓梯度消失

        ∷ 使用MaxPooling

        ∷ 全连接层后加入了丢弃层(DropOut

        ∷ 进行了数据增强(Data argumentation,截取图片一部分作为新增数据、或者调色温)

DropOut: 随机使某个神经元失效,以免训练后网络输出过度依赖某个神经元导致过拟合【深度学习】丢弃法(dropout)_苦逼的虾的博客-CSDN博客Dropout (nn.Dropout()) (为什么神经网络中的dropout可以作为正则化)(model.eval())(为什么Dropout可看作是一种集成学习)_hxxjxw的博客-CSDN博客

引起了计算机视觉方法论的改变,之前都是人工从图片提取特征,AlexNet使用CNN提取特征,如图3所示。

图3. 机器学习方法论的改变

         模型结构如下:

图4. AlexNet结构

         图中11×11卷积层(96)表示卷积核大小为11×11,输出通道数为96。

2.2 代码实现

        AlexNet结构和LeNet类似,也使用nn.Sequential作为构造器。

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 这里使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))

2.3 检查模型

检查模型即检查每层的名称及输出矩阵大小是否符合预期。

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 这里使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))X = torch.randn(1, 1, 224, 224)
for layer in net:X=layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)# 输出如下:
Conv2d output shape: torch.Size([1, 96, 54, 54])
ReLU output shape: torch.Size([1, 96, 54, 54])
MaxPool2d output shape: torch.Size([1, 96, 26, 26])
Conv2d output shape: torch.Size([1, 256, 26, 26])
ReLU output shape: torch.Size([1, 256, 26, 26])
MaxPool2d output shape: torch.Size([1, 256, 12, 12])
Conv2d output shape: torch.Size([1, 384, 12, 12])
ReLU output shape: torch.Size([1, 384, 12, 12])
Conv2d output shape: torch.Size([1, 384, 12, 12])
ReLU output shape: torch.Size([1, 384, 12, 12])
Conv2d output shape: torch.Size([1, 256, 12, 12])
ReLU output shape: torch.Size([1, 256, 12, 12])
MaxPool2d output shape: torch.Size([1, 256, 5, 5])
Flatten output shape: torch.Size([1, 6400])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])

2.4 训练模型

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 这里使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())# 输出如下:
loss 0.327, train acc 0.879, test acc 0.866
3903.6 examples/sec on cuda:0

训练过程如图5所示。

图5. AlexNet训练过程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/99958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

评测凯迪仕K70「千里眼」智能锁:不忘安全初心,便捷体验更上一层

能打败凯迪仕的,只有它自己。这是我们在体验过凯迪仕最新旗舰产品K70「千里眼」智能锁之后的感受。作为凯迪仕2023年最新旗舰机型,K70「千里眼」智能锁在配置上可以说是「机皇」般的存在。3K超高清智能锁猫眼、车规级24GHz雷达、大小双屏设计、三方可视对…

k8s部署prometheus

1、prometheus部署yml文件地址 github地址 2、下载yml文件 rootiZj6cd9joygowsf7am5hryZ:~# git clone https://github.com/redhatxl/k8s-prometheus-grafana.git Cloning into k8s-prometheus-grafana... remote: Enumerating objects: 21, done. remote: Total 21 (delta 0)…

table表头颜色 element plus

原图 预期 css :deep(.el-table__header) {background-color: #F5F7FA;} :deep(.el-table tr) {background-color: rgba(0,0,0,0);} :deep(.el-table th.el-table__cell) {background-color: rgba(0,0,0,0);}

<指针进阶>指针数组和数组指针傻傻分不清?

✨Blog:🥰不会敲代码的小张:)🥰 🉑推荐专栏:C语言🤪、Cpp😶‍🌫️、数据结构初阶💀 💽座右铭:“記住,每一天都是一個新的開始&#x1…

Stable Diffusion训练Lora模型

以下内容参考:https://www.bilibili.com/video/BV1Qk4y1E7nv/?spm_id_from333.337.search-card.all.click&vd_source3969f30b089463e19db0cc5e8fe4583a 1、训练Lora的2个重点步骤 第一步,准备训练要使用的图片,即优质的图片 第二部,为…

在Qt窗口中添加右键菜单

在Qt窗口中添加右键菜单 基于鼠标的事件实现流程demo 基于窗口的菜单策略实现Qt::DefaultContextMenuQt::ActionsContextMenuQt::CustomContextMenu信号API 基于鼠标的事件实现 流程 需要使用:事件处理器函数(回调函数) 在当前窗口类中重写鼠标操作相关的的事件处理器函数&a…

【论文阅读】HOLMES:通过关联可疑信息流进行实时 APT 检测(SP-2019)

HOLMES: Real-time APT Detection through Correlation of Suspicious Information Flows S&P-2019 伊利诺伊大学芝加哥分校、密歇根大学迪尔伯恩分校、石溪大学 Milajerdi S M, Gjomemo R, Eshete B, et al. Holmes: real-time apt detection through correlation of susp…

飞天使-kubeadm安装一主一从集群

文章目录 安装前准备安装前准备配置yum源等安装前准备docker安装 安装kubeadm配置kubeadm验证集群 参考链接 安装前准备 cat >> /etc/hosts <<EOF 192.168.100.30 k8s-01 192.168.100.31 k8s-02 EOF hostnamectl set-hostname k8s-01 #所有机器按照要求修改 ho…

IDEA创建Mybatis格式XML文件

设置位置&#xff1a;File | Settings | Editor | File and Code Templates 选择Files&#xff0c;点击号 Name中输入xml模板名&#xff08;名称自行决定&#xff09;&#xff0c;后缀名extension输入xml&#xff08;固定&#xff09; 内容处输入Mybatis的xml文件模板内容&…

【Python爬虫案例】爬取大麦网任意城市的近期演出!

老规矩&#xff0c;先上结果&#xff1a; 含10个字段&#xff1a; 页码&#xff0c;演出标题&#xff0c;链接地址&#xff0c;演出时间&#xff0c;演出城市&#xff0c;演出地点&#xff0c;售价&#xff0c;演出类别&#xff0c;演出子类别&#xff0c;售票状态。 代码演示…

稳定扩散ControlNet v1.1 权威指南

ControlNet 是一种稳定扩散模型&#xff0c;可让你从参考图像中复制构图或人体姿势。 经验丰富的稳定扩散用户知道生成想要的确切成分有多难。图像有点随机。你所能做的就是玩数字游戏&#xff1a;生成大量图像并选择你喜欢的图片。 借助 ControlNet&#xff0c;稳定扩散用户…

Android Studio 接入OpenCV最简单的例子 : 实现灰度图效果

1. 前言 上文 我们在Windows电脑上实现了人脸功能&#xff0c;接下来我们要把人脸识别的功能移植到Android上。 那么首先第一步&#xff0c;就是要创建一个Native的Android项目&#xff0c;并且配置好OpenGL&#xff0c;并能够调用成功。 这里我们使用的是openCV-4.8.0&#x…

(三)Linux中卸载docker(非常详细)

docker 卸载 使用yum安装docker 如需卸载docker可以按下面步骤操作&#xff1a; 1、停止docker服务 systemctl stop docker 2、查看yum安装的docker文件包 yum list installed |grep docker 3、查看docker相关的rpm源文件 rpm -qa |grep docker 4、删除所有安装的docke…

redis 哨兵模式

目录 一、什么是哨兵模式 二、配置哨兵 三、启动哨兵 四、验证哨兵 五、复制延时 六、选举策略 一、什么是哨兵模式 哨兵也叫 sentinel&#xff0c;它的作用是能够在后台监控主机是否故障&#xff0c;如果故障了根据投票数自动将从库转换为主库。 二、配置哨兵 首先停止…

【后端速成 Vue】第一个 Vue 程序

1、为什么要学习 Vue&#xff1f; 为什么使用 Vue? 回想之前&#xff0c;前后端交互的时候&#xff0c;前端收到后端响应的数据&#xff0c;接着将数据渲染到页面上&#xff0c;之前使用的是 JavaScript 或者 基于 JavaScript 的 Jquery&#xff0c;但是这两个用起来还是不太…

使用在 Web 浏览器中运行的 VSCode 实现 ROS2 测程法

一、说明 Hadabot是软件工程师学习ROS2和机器人技术的机器人套件。我们距离Hadabot套件的测试版还有一周左右的时间。我们将在本文末尾披露有关如何注册的更多信息。 新的Hadabot套件完全支持ROS2。除了硬件套件外&#xff0c;Hadabot软件环境将主要基于Web浏览器&#xff0c;以…

基于JJWT理解JWT,JWS,JWE

JWT &#xff0c; 全写JSON Web Token, 是开放的行业标准RFC7591&#xff0c;用来实现端到端安全验证. 从开发者理解的角度来说&#xff1a; JWT 是一个定义传递信息的标准JWT 的Token是一个Base64编码的字符串&#xff0c; 类似 eyJhbGciOiJIUzI1NyJ9.eyJzdWIiOiJvc2NhciJ9.…

HTTP和HTTPS的区别及通信原理

文章目录 HTTP特性http解决无状态的问题&#x1f36a;cookiesessiontoken 常见状态码报文和字段方法 HTTPS补充知识常见的加密方式数字摘要 &#xff08;数字指纹&#xff09; && 数字签名 加密过程 HTTP 何为http&#xff1f; http是超文本传输协议&#xff0c;Hyper…

linux的http服务

Web通信基本概念 基于B/S&#xff08;Browser/Server&#xff09;架构的网页服务 服务端提供网页 浏览器下载并显示网页 Hyper Text Markup Lanuage,超文本标记语言 Hyper Text Transfer Protocol&#xff0c;超文本传输协议 虚拟机A&#xff1a;构建基本的Web服务 [root…

Anaconda, Python, Jupyter和PyCharm介绍

目录 1 Anaconda, Python, Jupyter和PyCharm介绍 2 macOS通过Anaconda安装Python, Jupyter和PyCharm 3 使用终端创建虚拟环境并安装PyTorch 4 安装PyCharm并导入Anaconda虚拟环境 5 Windows操作系统下Anaconda与PyCharm安装 6 通过 Anaconda Navigator 创建 TensorFlow 虚…