ROS应用之SwarmSim在ROS 中的协同路径规划

 SwarmSim 在 ROS 中的协同路径规划


前言

在多机器人系统(Multi-Robot Systems, MRS)中,SwarmSim 是一个常用的模拟工具,可以对多机器人进行仿真以实现复杂任务的协同。除了任务分配逻辑以外,SwarmSim 在协同路径规划方面也具有重要意义。协同路径规划是指多机器人在同一环境中找到彼此不发生冲突的最优路径,以完成各自的目标任务。本文将从理论到实现详细解析 SwarmSim 在协同路径规划中的应用。


原理介绍

1. 基本概念

协同路径规划的核心在于 避免冲突优化路径

  • 避免冲突:确保机器人不会因路径交叉而发生碰撞。

  • 优化路径:基于最短路径、最小时间消耗或其他优化目标,找到机器人从起点到终点的最佳路线。

在 SwarmSim 中,协同路径规划常基于以下模型:

  • A* 算法:单机器人路径规划的基础。

  • CBS 算法(Conflict-Based Search):解决多机器人冲突的扩展。

  • 时间-空间网络模型:将机器人路径规划扩展到时间维度。

2. 整体流程

SwarmSim 的协同路径规划包括以下步骤:

  1. 环境建模

    • 将机器人运行的空间划分为栅格地图。

    • 地图中每个单元格表示一个可能的机器人位置。

  2. 单机器人路径规划

    • 每个机器人独立计算从起点到终点的最优路径(例如通过 A* 算法)。

  3. 冲突检测

    • 检测多个机器人路径是否存在冲突(例如同时占用同一单元格)。

  4. 冲突解决

    • 若存在冲突,通过 CBS 算法为冲突机器人重新规划路径。

  5. 路径优化

    • 综合考虑路径长度和时间约束,优化整体路径。

3. 关键特点
  • 分布式与集中式协作

    • SwarmSim 支持分布式路径规划(机器人独立决策)和集中式路径规划(统一决策)。

  • 动态环境适应性

    • 在动态环境中,机器人能够根据新出现的障碍物或动态任务重新规划路径。

  • 可扩展性

    • SwarmSim 能够模拟多达数百个机器人的协同路径规划任务。

4. 算法流程

以下为 CBS 算法的基本步骤:

  1. 初始化:

    • 每个机器人独立生成一条无冲突路径。

  2. 冲突检测:

    • 遍历所有机器人路径,记录冲突信息(如时间、位置)。

  3. 冲突分解:

    • 根据冲突信息创建约束,限制机器人使用冲突位置。

    • 重新生成冲突机器人的路径。

  4. 路径优化:

    • 综合路径总长度和其他优化目标,生成最终的路径规划结果。

公式描述如下:

  • 路径总代价:

    其中,N 为机器人总数,Cost(Pi) 表示第 i 个机器人的路径代价。

  • 冲突检测函数:


部署环境介绍

  • 操作系统:Ubuntu 20.04

  • ROS 版本:ROS 2 Humble

  • 依赖工具:

    • SwarmSim

    • RViz(用于可视化)

    • Python 或 C++(用于算法实现)


部署流程

  1. 安装 SwarmSim

    git clone https://github.com/swarm-sim/swarm-sim.git
    cd swarm-sim
    colcon build
    source install/setup.bash
  2. 准备地图文件

    • 使用 YAML 格式定义环境地图:

      resolution: 0.05
      origin: [0.0, 0.0, 0.0]
      occupancy_grid: map.pgm
  3. 启动仿真环境

    ros2 launch swarm_sim launch_simulation.launch.py
  4. 启动协同路径规划节点

    • 运行示例代码,完成机器人路径规划。


代码示例

以下为 CBS 算法的简化实现:

import heapq
​
class CBSPlanner:def __init__(self, robots, environment):self.robots = robotsself.environment = environmentself.open_list = []
​def plan_paths(self):# Step 1: Initialize pathspaths = {robot: self.plan_individual_path(robot) for robot in self.robots}heapq.heappush(self.open_list, (self.calculate_cost(paths), paths, []))return self.resolve_conflicts()
​def plan_individual_path(self, robot):# Basic A* implementation# Returns path for a single robotpass
​def calculate_cost(self, paths):return sum(len(path) for path in paths.values())
​def resolve_conflicts(self):while self.open_list:cost, paths, constraints = heapq.heappop(self.open_list)conflicts = self.detect_conflicts(paths)if not conflicts:return pathsfor conflict in conflicts:new_constraints = constraints + [self.create_constraint(conflict)]new_paths = self.replan_with_constraints(new_constraints)heapq.heappush(self.open_list, (self.calculate_cost(new_paths), new_paths, new_constraints))
​def detect_conflicts(self, paths):# Detect conflicts in the pathspass
​def create_constraint(self, conflict):# Create new constraints based on conflictpass
​def replan_with_constraints(self, constraints):# Replan paths with updated constraintspass

代码解读

1. 初始化路径规划
  • 函数

    plan_individual_path
    • 调用单机器人路径规划算法(如 A*)计算初始路径。

    • 输出为机器人从起点到终点的路径。

2. 冲突检测
  • 函数

    detect_conflicts
    • 遍历所有路径,检测是否存在同时访问同一单元格的情况。

3. 冲突分解
  • 函数

    create_constraint
    • 根据冲突生成约束,例如禁止机器人在特定时间访问某单元格。

4. 路径优化
  • 函数

    calculate_cost
    • 计算当前路径的总代价,用于比较不同路径规划结果的优劣。


运行效果说明

1. 实验环境设置
  • 地图设置:10x10 栅格地图,障碍物随机分布,部分区域设置为高代价区域。

  • 机器人数量:3 台机器人,分别从不同的起点(如 (1,1),(3,5),(8,8))出发,到达各自目标点(如 (9,9),(1,8),(5,3))。

  • 初始路径规划:每台机器人独立运行 A* 算法生成路径,不考虑冲突。

  • 规划目标:消除冲突,最小化路径总长度,同时保持实时性。


2. 实验步骤记录
  1. 运行初始路径规划节点

点击三木地带你手搓ROS应用之SwarmSim在ROS 中的协同路径规划查看全文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10628.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新鲜速递:DeepSeek-R1开源大模型本地部署实战—Ollama + MaxKB 搭建RAG检索增强生成应用

在AI技术快速发展的今天,开源大模型的本地化部署正在成为开发者们的热门实践方向。最火的莫过于吊打OpenAI过亿成本的纯国产DeepSeek开源大模型,就在刚刚,凭一己之力让英伟达大跌18%,纳斯达克大跌3.7%,足足是给中国AI产…

【Rust自学】15.5. Rc<T>:引用计数智能指针与共享所有权

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 15.5.1. 什么是Rc<T> 所有权在大部分情况下都是清晰的。对于一个给定的值&#xff0c;程序员可以准确地推断出哪个变量拥有它。 …

UE5制作视差图

双目深度估计开源数据集很多都是用UE制作的&#xff0c;那么我们自己能否通过UE制作自己想要的场景的数据集呢。最近花了点时间研究了一下&#xff0c;分享给需要的小伙伴。 主要使用的是UnrealCV插件&#xff0c;UnrealCV是一个开源项目&#xff0c;旨在帮助计算机视觉研究人…

基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 HOG 4.2 GRNN&#xff08;General Regression Neural Network&#xff09;模型原理 4.3 遗传算法&#xff08;GA&#xff09;优化GRNN平滑因子 5.算法完整程序工程 1.算法运行效果图预…

C语言【基础篇】之流程控制——掌握三大结构的奥秘

流程控制 &#x1f680;前言&#x1f99c;顺序结构&#x1f4af; 定义&#x1f4af;执行规则 &#x1f31f;选择结构&#x1f4af;if语句&#x1f4af;switch语句&#x1f4af;case穿透规则 &#x1f914;循环结构&#x1f4af;for循环&#x1f4af;while循环&#x1f4af;do -…

C++实现状态模式

首先上代码&#xff1a; #include <iostream> #include <memory>class Context;class State { public:virtual void Handle(Context * context) 0; //纯虚函数virtual ~State() default; //虚析构函数 };//创建状态A class ConcreateStateA : public State{…

【React】PureComponent 和 Component 的区别

前言 在 React 中&#xff0c;PureComponent 和 Component 都是用于创建组件的基类&#xff0c;但它们有一个主要的区别&#xff1a;PureComponent 会给类组件默认加一个shouldComponentUpdate周期函数。在此周期函数中&#xff0c;它对props 和 state (新老的属性/状态)会做一…

二级C语言:二维数组每行最大值与首元素交换、删除结构体的重复项、取出单词首字母

目录 一、程序填空 --- 二维数组每行最大值与首元素交换 题目 分析 知识点 --- 交换语句 二、程序修改 --- 删除结构体的重复项 题目 分析 三、程序设计 --- 取出单词首字母 题目 分析 前言 本章讲解&#xff1a;二维数组每行最大值与首元素交换、删除结构体的重复项…

CUDA学习-内存访问

一 访存合并 1.1 说明 本部分内容主要参考: 搞懂 CUDA Shared Memory 上的 bank conflicts 和向量化指令(LDS.128 / float4)的访存特点 - 知乎 1.2 share memory结构 图1.1 share memory结构 放在 shared memory 中的数据是以 4 bytes(即 32 bits)作为 1 个 word,依…

【python】python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;专__注&#x1f448;&#xff1a;专注主流机器人、人工智能等相关领域的开发、测试技术。 python基于机器学习与数据分析的手机特性关联与分类…

【leetcode详解】T3175(一点反思)

解题心得 要写出一个好的程序&#xff0c;有效解决问题&#xff0c;思路上就不能“太乖” —— 不能被题目的叙述过程所束缚&#xff0c;而是力求细思问题&#xff0c;抽象化问题&#xff0c;并找到背后的逻辑&#xff1b;最后抓住核心对象&#xff0c;去除多余项&#xff0c;…

图论——最小生成树

最小生成树 给定一个无向图&#xff0c;在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中&#xff0c;叫做求最小生成树。 prim算法 prim 算法采用的是一种贪心的策略。 每次将离连通部分的最近的点和点对应的边加入的连通部分&#xff0c;连通部分逐渐扩大…

jvisualvm工具使用

jvisualvm 是JDK自带的具有图形界面操作功能的JVM性能监控和诊断工具&#xff0c;它不仅能分析和诊断堆转储文件&#xff0c;在线实时监控本地JVM进程&#xff0c;还能监控远程服务器上的JVM进程。 1 分析服务器下载dump文件 1&#xff09;在我们在安装JDK的bin目录双击jvisa…

C++ list

list需知&#xff1a; list不会出现insert迭代器失效问题 链表插入不会影响原有数据相对位置&#xff0c;且不用扩容 但是erase会导致相对数据位置移动&#xff0c;所有其erase会导致迭代器失效 list排序效率很低 不建议使用 小规模数据量可以使用&#xff0c;比较方便 此外…

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来&#xff0c;人工智能&#xff08;AI&#xff09;领域发展迅猛&#xff0c;大语言模型&#xff08;LLMs&#xff09;为通用人工智能&#xff08;AGI&#xff09;的发展开辟了道路。OpenAI 的 o1 模型表现非凡&#xff0c;它引入的创新性推理时缩放技术显著提升了推理能力…

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

&#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f3af;项目基本介绍 &#x1f6a6;项…

蓝桥杯思维训练营(一)

文章目录 题目总览题目详解翻之一起做很甜的梦 蓝桥杯的前几题用到的算法较少&#xff0c;大部分考察的都是思维能力&#xff0c;方法比较巧妙&#xff0c;所以我们要积累对应的题目&#xff0c;多训练 题目总览 翻之 一起做很甜的梦 题目详解 翻之 思维分析&#xff1a;一开…

【AI】DeepSeek 概念/影响/使用/部署

在大年三十那天&#xff0c;不知道你是否留意到&#xff0c;“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注&#xff0c;出于学习的兴趣&#xff0c;我深入研究了一番&#xff0c;才有了这篇文章的诞生。 概念 那么&#xff0c;什么是DeepSeek&#xff1f;首先百…

minimind - 从零开始训练小型语言模型

大语言模型&#xff08;LLM&#xff09;领域&#xff0c;如 GPT、LLaMA、GLM 等&#xff0c;虽然它们效果惊艳&#xff0c; 但动辄10 Bilion庞大的模型参数个人设备显存远不够训练&#xff0c;甚至推理困难。 几乎所有人都不会只满足于用Lora等方案fine-tuing大模型学会一些新的…

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分&#xff1a; 首先自定义了一个简单的数据集&#xff0c;特征 X 是 100 个随机样本&#xff0c;每个样本一个特征&#xff0c;目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量&#xff0c;方便后续在模型中…