手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

目录

手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

前提条件

设置学习率

学习率的主流优化算法


手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

我们明确了分类任务的损失函数(优化目标)的相关概念和实现方法,本节我们依旧横向展开"横纵式"教学法,如 图1 所示,本节主要探讨在手写数字识别任务中,使得损失达到最小的参数取值的实现方法。

图1:“横纵式”教学法 — 优化算法



前提条件

在优化算法之前,需要进行数据处理、设计神经网络结构,代码与上一节保持一致,如下所示。

# 加载相关库
import os
import random
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import numpy as np
from PIL import Image
import gzip
import json# 定义数据集读取器
def load_data(mode='train'):# 读取数据文件datafile = './work/mnist.json.gz'print('loading mnist dataset from {} ......'.format(datafile))data = json.load(gzip.open(datafile))# 读取数据集中的训练集,验证集和测试集train_set, val_set, eval_set = data# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLSIMG_ROWS = 28IMG_COLS = 28# 根据输入mode参数决定使用训练集,验证集还是测试if mode == 'train':imgs = train_set[0]labels = train_set[1]elif mode == 'valid':imgs = val_set[0]labels = val_set[1]elif mode == 'eval':imgs = eval_set[0]labels = eval_set[1]# 获得所有图像的数量imgs_length = len(imgs)# 验证图像数量和标签数量是否一致assert len(imgs) == len(labels), \"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))index_list = list(range(imgs_length))# 读入数据时用到的batchsizeBATCHSIZE = 100# 定义数据生成器def data_generator():# 训练模式下,打乱训练数据if mode == 'train':random.shuffle(index_list)imgs_list = []labels_list = []# 按照索引读取数据for i in index_list:# 读取图像和标签,转换其尺寸和类型img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')label = np.reshape(labels[i], [1]).astype('int64')imgs_list.append(img) labels_list.append(label)# 如果当前数据缓存达到了batch size,就返回一个批次数据if len(imgs_list) == BATCHSIZE:yield np.array(imgs_list), np.array(labels_list)# 清空数据缓存列表imgs_list = []labels_list = []# 如果剩余数据的数目小于BATCHSIZE,# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batchif len(imgs_list) > 0:yield np.array(imgs_list), np.array(labels_list)return data_generator# 定义模型结构
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是10self.fc = Linear(in_features=980, out_features=10)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层激活函数使用softmaxdef forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

设置学习率

在深度学习神经网络模型中,通常使用标准的随机梯度下降算法更新参数,学习率代表参数更新幅度的大小,即步长。当学习率最优时,模型的有效容量最大,最终能达到的效果最好。学习率和深度学习任务类型有关,合适的学习率往往需要大量的实验和调参经验。探索学习率最优值时需要注意如下两点:

  • 学习率不是越小越好。学习率越小,损失函数的变化速度越慢,意味着我们需要花费更长的时间进行收敛,如 图2 左图所示。
  • 学习率不是越大越好。只根据总样本集中的一个批次计算梯度,抽样误差会导致计算出的梯度不是全局最优的方向,且存在波动。在接近最优解时,过大的学习率会导致参数在最优解附近震荡,损失难以收敛,如 图2 右图所示。


图2: 不同学习率(步长过大/过小)的示意图
 

在训练前,我们往往不清楚一个特定问题设置成怎样的学习率是合理的,因此在训练时可以尝试调小或调大,通过观察Loss下降的情况判断合理的学习率,设置学习率的代码如下所示。

#仅优化算法的设置有所差别
def train(model):model.train()#调用加载数据的函数train_loader = load_data('train')#设置不同初始学习率opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())# opt = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters())# opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 10for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.cross_entropy(predicts, labels)avg_loss = paddle.mean(loss)#每训练了100批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')#创建模型    
model = MNIST()
#启动训练过程
train(model)

学习率的主流优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 图3 所示。


图3: 不同学习率算法效果示意图
 

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。

  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。

每个批次的数据含有抽样误差,导致梯度更新的方向波动较大。如果我们引入物理动量的概念,给梯度下降的过程加入一定的“惯性”累积,就可以减少更新路径上的震荡,即每次更新的梯度由“历史多次梯度的累积方向”和“当次梯度”加权相加得到。历史多次梯度的累积方向往往是从全局视角更正确的方向,这与“惯性”的物理概念很像,也是为何其起名为“Momentum”的原因。类似不同品牌和材质的篮球有一定的重量差别,街头篮球队中的投手(擅长中远距离投篮)喜欢稍重篮球的比例较高。一个很重要的原因是,重的篮球惯性大,更不容易受到手势的小幅变形或风吹的影响。

  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。

通过调整学习率的实验可以发现:当某个参数的现值距离最优解较远时(表现为梯度的绝对值较大),我们期望参数更新的步长大一些,以便更快收敛到最优解。当某个参数的现值距离最优解较近时(表现为梯度的绝对值较小),我们期望参数的更新步长小一些,以便更精细的逼近最优解。类似于打高尔夫球,专业运动员第一杆开球时,通常会大力打一个远球,让球尽量落在洞口附近。当第二杆面对离洞口较近的球时,他会更轻柔而细致的推杆,避免将球打飞。与此类似,参数更新的步长应该随着优化过程逐渐减少,减少的程度与当前梯度的大小有关。根据这个思想编写的优化算法称为“AdaGrad”,Ada是Adaptive的缩写,表示“适应环境而变化”的意思。RMSProp是在AdaGrad基础上的改进,学习率随着梯度变化而适应,解决AdaGrad学习率急剧下降的问题。

  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

说明:

每种优化算法均有更多的参数设置。理论最合理的未必在具体案例中最有效,所以模型调参是很有必要的,最优的模型配置往往是在一定“理论”和“经验”的指导下实验出来的。


我们可以尝试选择不同的优化算法训练模型,观察训练时间和损失变化的情况,代码实现如下。

#仅优化算法的设置有所差别
def train(model):model.train()#调用加载数据的函数train_loader = load_data('train')#四种优化算法的设置方案,可以逐一尝试效果opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())# opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters())# opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters())# opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 3for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.cross_entropy(predicts, labels)avg_loss = paddle.mean(loss)#每训练了100批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')#创建模型    
model = MNIST()
#启动训练过程
train(model)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108444.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源软件与知识产权:需要注意什么?

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

为Claude的分析内容做准备:提取PDF页面内容的简易应用程序

由于Claude虽然可以分析整个文件,但是对文件的大小以及字数是有限制的,为了将pdf文件分批传入Claude人工智能分析和总结文章内容,才有了这篇博客: 在本篇博客中,我们将介绍一个基于 wxPython 和 PyMuPDF 库编写的简易的…

锐捷PPP协议原理--尚文网络敏姐

PPP 点对点协议 目录 PPP 点对点协议 PPP 简介 PPP协议层介绍: PPP协议工作原理 第一个阶段:LCP协商 第二阶段:身份认证阶段 第三阶段:NCP协商阶段 PPP配置实验 PAP的单向认证: PAP双向认证 CHAP的单向认证&#…

FreeSWITCH 1.10.10 简单图形化界面1 - docker/脚本/ISO镜像安装

FreeSWITCH 1.10.10 简单图形化界面1 - docker/脚本/ISO镜像安装 0. 界面预览1. Docker安装1.1 下载docker镜像1.2 启动docker镜像1.3 登录 2. 脚本安装2.1 下载2.2 安装2.3 登录2.4 卸载程序 3. 镜像安装3.1 下载镜像3.2 安装镜像3.3 登录 0. 界面预览 http://myfs.f3322.net…

基于android的学生公寓后勤系统/学生公寓管理系统APP

摘 要 随着网络科技的发展,移动智能终端逐渐走进人们的视线,相关应用越来越广泛,并在人们的日常生活中扮演着越来越重要的角色。因此,关键应用程序的开发成为影响移动智能终端普及的重要因素,设计并开发实用、方便的应…

Qt --- 自定义提示框 类似QMessagebox

QMessageBox::information(NULL, QString("title"), QString("I am information")); 以下是自定义提示框的代码,有图有真相!提示框大部分都采用模态的形式,关于模态也不再多提!所以父类为QDialog,…

android系统启动流程之zygote如何创建SystemServer进程

SystemServer:是独立的进程,主要工作是管理服务的,它将启动大约90种服务Services. 它主要承担的职责是为APP的运行提供各种服务,像AMS,WMS这些服务并不是一个独立的进程, 它们其实都是SystemServer进程中需要管理的的众多服务之一…

G. The Morning Star - 思维

分析: 直接暴力就会tle,不知道怎么下手,可以统计八个方向一条线上的所有坐标,这些坐标一定可以放在一起满足,分析都有哪些线,当横坐标相同时会有竖着的一条线都可以,也就是x c,当纵…

go学习之流程控制语句

文章目录 流程控制语句1.顺序控制2.分支控制2.1单分支2.2双分支单分支和双分支的四个题目switch分支结构 3.循环控制for循环控制while 和do...while的实现 4.跳转控制语句breakcontinuegotoreturngotoreturn 流程控制语句 介绍:在程序中,程序运行的流程…

Vue2学习笔记のvuex

目录 vuex1.概念2.何时使用?3.搭建vuex环境4.基本使用5.getters的使用6.四个map方法的使用7.模块化命名空间 hello, 本文是Vue2学习笔记的第5篇:vuex。 vuex 1.概念 在Vue中实现集中式状态(数据)管理的一个Vue插件,对…

linux 同时kill杀死多进程实践

使用场景 当程序中有使用到多进程且进程数较多的情况,如下图,且需要通过控制台杀死所有的 GSM_run.py 的进程时,利用 kill 命令一个一个的去结束进程是及其耗时且繁琐的,这时就需要我们的kill多进程的命令工作了。 批量 Kill 进程…

网络基础入门

认识协议 协议其实是一种约定 网络协议初识: 1.内核上以结构体形式呈现 2.操作系统要进行协议管理--先描述,在管理 3.协议的本质是软件,软件是可以分层的,(联系C继承多态的知识 ) 可以参考 &#xff1…

【洛谷】P2678 跳石头

原题链接:https://www.luogu.com.cn/problem/P2678 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 二分答案。(使用二分需要满足两个条件。一个是有界,一个是单调。 这题的题面:使得选手们在比赛过程中…

MES管理系统如何让传统汽车行业从“制造”走向“智造”

在传统制造业中,“数字化转型”是一个老生常谈的话题,然而,许多传统制造业仍处于“信息化”的阶段,距离真正的数字化还有很长的路要走。如果要在所有传统制造行业中寻找那些可以成为转型“先行者”的领域,那么深度与广…

Java进阶(7)——手动实现LinkedList 内部node类的实现 增删改查的实现 toString方法 源码的初步理解

目录 引出从ArrayList到Linkedlist手动实现ArrayList从ArrayList到LinkedList 总体设计Node类Node的方法:根据index找node 增删改查的实现增加元素删除元素修改元素查询元素 toString方法完整代码List接口类LinkedList的实现测试类 总结 引出 1.linkedList的节点&am…

4.4TCP半连接队列和全连接队列

目录 什么是 TCP 半连接队列和全连接队列? TCP 全连接队列溢出 如何知道应用程序的 TCP 全连接队列大小? 如何模拟 TCP 全连接队列溢出的场景? 全连接队列溢出会发生什么 ? 如何增大全连接队列呢 ? TCP 半连接队列溢出 如何查看 TC…

matlab 最小二乘拟合二维直线(直接求解法)

目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 平面直线的表达式为: y = k x + b

【java】【idea2023版】Springboot模块没有.iml文件的问题

目录 方法一: 1、首先鼠标选中对应的对应的模块 ,按两下Ctrl键 2、project中选择对应的模块 3、运行mvn idea:module 命令​编辑 方法二: 1、可以右键点击open Terminal 2、然后在打开的Terminal里输入 方法一: 1、首先鼠…

交叉熵的简单理解:真实分布与非真实分布的交叉,完全对应,熵为0

目录 交叉熵的简单理解:真实分布与非真实分布的交叉,完全对应,熵为0 交叉熵的简单理解:真实分布与非真实分布的交叉,完全对应,熵为0 这个式子就是熵的表达式. 简单来说, 其意义就是在最优化策略下, 猜到颜…

2000-2021年上市公司绿色投资环保投资与营业收入之比数据(原始数据+计算代码+计算结果)

2000-2021年上市公司绿色投资环保投资与营业收入之比数据(原始数据计算代码计算结果) 1、时间:2000-2021年 2、来源:上市公司年报 3、指标:证券代码、企业名称、年份、管理费用环保投资、管理费用环保投资/营业收入…