计算机竞赛 基于大数据的股票量化分析与股价预测系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 设计原理
    • QTCharts
    • arma模型预测
    • K-means聚类算法
    • 算法实现关键问题说明
  • 4 部分核心代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的股票量化分析与股价预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于大数据的股票可视化分析平台设计,对股票数据进行预处理,清洗以及可视化分析,同时设计了软件界面。

2 实现效果

价格可视化
在这里插入图片描述
魔梯访问与指标计算

在这里插入图片描述
聚类分析
在这里插入图片描述

3 设计原理

QTCharts

简介

QtCharts是Qt自带的组件库,其中包含折线、曲线、饼图、棒图、散点图、雷达图等各种常用的图表。而在地面站开发过程中,使用折线图可以对无人机的一些状态数据进行监测,更是可以使用散点图来模拟飞机所在位置,实现平面地图的感觉。

使用Qt
Charts绘制,大概可以分为四个部分:数据(QXYSeries)、图表(QChart)、坐标轴(QAbstractAXis)和视图(QChartView)。这里就不一一给大家介绍了,下面给大家说一下QtCharts的配置安装。

QtCharts模块的C++类

在这里插入图片描述

arma模型预测

简介

ARMA模型,又称为ARMA
(p,q)模型。其核心思想就是当前正如名字所显示的,整个模型的核心就是要确定p和q这两个参数。其中,p决定了我们要用几个滞后时期的价格数据,而q决定了我们要用几个滞后时期的预测误差。

在这里插入图片描述

简单来说,ARMA模型做了两件事。一是基于趋势理论,用历史数据来回归出一个当前的价格预测,这个预测反映了自回归的思想。但是这个预测必然是有差异的,所以ARMA模型根据历史的预测误差也回归出一个当前的误差预测,这个预测反映了加权平均的思想。用价格预测加上误差预测修正,才最终得到一个理论上更加精确的最终价格预测。

比起简单的自回归模型或者以时间为基础的简单趋势预测模型,ARMA模型最大的优势,在于综合了趋势理论和均值回归理论,理论上的精确度会比较高。

    '''自回归滑动平均模型'''from statsmodels.tsa.arima_model import ARMAfrom itertools import product​     ```
def myARMA(data):p = range(0, 9)q = range(0, 9)parameters = list(product(p, q))  # 生成(p,q)从(0,0)到(9,9)的枚举best_aic = float('inf')result = Nonefor param in parameters:try:model = ARMA(endog=data, order=(param[0], param[1])).fit()except ValueError:print("参数错误:", param)continueaic = model.aicif aic < best_aic:  # 选取最优的aicbest_aic = model.aicresult = (model, param)return result
```

K-means聚类算法

基本原理

k-Means算法是一种使用最普遍的聚类算法,它是一种无监督学习算法,目的是将相似的对象归到同一个簇中。簇内的对象越相似,聚类的效果就越好。该算法不适合处理离散型属性,但对于连续型属性具有较好的聚类效果。

聚类效果判定标准

使各个样本点与所在簇的质心的误差平方和达到最小,这是评价k-means算法最后聚类效果的评价标准。

在这里插入图片描述

算法实现步骤

1)选定k值

2)创建k个点作为k个簇的起始质心。

3)分别计算剩下的元素到k个簇的质心的距离,将这些元素分别划归到距离最小的簇。

4)根据聚类结果,重新计算k个簇各自的新的质心,即取簇中全部元素各自维度下的算术平均值。

5)将全部元素按照新的质心重新聚类。

6)重复第5步,直到聚类结果不再变化。

7)最后,输出聚类结果。

算法缺点

虽然K-Means算法原理简单,但是有自身的缺陷:

1)聚类的簇数k值需在聚类前给出,但在很多时候中k值的选定是十分难以估计的,很多情况我们聚类前并不清楚给出的数据集应当分成多少类才最恰当。

2)k-means需要人为地确定初始质心,不一样的初始质心可能会得出差别很大的聚类结果,无法保证k-means算法收敛于全局最优解。

3)对离群点敏感。

4)结果不稳定(受输入顺序影响)。

5)时间复杂度高O(nkt),其中n是对象总数,k是簇数,t是迭代次数。

算法实现关键问题说明

K值的选定说明

根据聚类原则:组内差距要小,组间差距要大。我们先算出不同k值下各个SSE(Sum of
squared
errors)值,然后绘制出折线图来比较,从中选定最优解。从图中,我们可以看出k值到达5以后,SSE变化趋于平缓,所以我们选定5作为k值。

在这里插入图片描述

初始的K个质心选定说明

初始的k个质心选定是采用的随机法。从各列数值最大值和最小值中间按正太分布随机选取k个质心。

关于离群点

离群点就是远离整体的,非常异常、非常特殊的数据点。因为k-
means算法对离群点十分敏感,所以在聚类之前应该将这些“极大”、“极小”之类的离群数据都去掉,否则会对于聚类的结果有影响。离群点的判定标准是根据前面数据可视化分析过程的散点图和箱线图进行判定。

4 部分核心代码

#include "kmeans.h"
#include "ui_kmeans.h"kmeans::kmeans(QWidget *parent) :QDialog(parent),ui(new Ui::kmeans)
{this->setWindowFlags(Qt::Dialog | Qt::WindowMinMaxButtonsHint | Qt::WindowCloseButtonHint);ui->setupUi(this);
}kmeans::~kmeans()
{delete ui;
}void kmeans::closeEvent(QCloseEvent *)
{end_flag=true;
}void kmeans::on_pushButton_clicked()
{end_flag=false;//读取数据QFile sharpe("sharpe.txt");sharpe.open(QIODevice::ReadOnly|QIODevice::Text);std::vector<std::array<double,2>> data;while(!sharpe.atEnd()){QStringList linels=QString(sharpe.readLine()).split(',');qreal mean=linels[3].toDouble();qreal sd=linels[4].toDouble();if(mean>-0.06&&mean<0.06&&sd<0.12)data.push_back({mean,sd});}std::random_shuffle(data.begin(),data.end());sharpe.close();//聚类ui->pushButton->setText("聚类中...");QApplication::processEvents();auto labels=std::get<1>(dkm::kmeans_lloyd(data,9));ui->pushButton->setText("开始");QApplication::processEvents();//作图QChart *chart = new QChart();//chart->setAnimationOptions(QChart::SeriesAnimations);//chart->legend()->setVisible(false);QList<QScatterSeries*> serieses;QList<QColor> colors{QColor(Qt::black),QColor(Qt::cyan),QColor(Qt::red),QColor(Qt::green),QColor(Qt::magenta),QColor(Qt::yellow),QColor(Qt::gray),QColor(Qt::blue),QColor("#A27E36")};for(int i=0;i<9;i++){QScatterSeries *temp = new QScatterSeries();temp->setName(QString::number(i));temp->setColor(colors[i]);temp->setMarkerSize(10.0);serieses.append(temp);chart->addSeries(temp);}chart->createDefaultAxes();/*v4
-------------------------------------------------------------Percentiles      Smallest1%     -.023384        -.359855%    -.0115851       -.349373
10%    -.0078976       -.325249       Obs             613,849
25%    -.0037067       -.324942       Sum of Wgt.     613,84950%     .0000567                      Mean           .0004866Largest       Std. Dev.      .0130231
75%     .0041332        1.28376
90%     .0091571        1.52169       Variance       .0001696
95%     .0132541        2.73128       Skewness       95.21884
99%     .0273964        4.56203       Kurtosis       28540.15v5
-------------------------------------------------------------Percentiles      Smallest1%     .0073016       4.68e-075%     .0112397       7.22e-07
10%     .0135353       7.84e-07       Obs             613,849
25%     .0180452       8.21e-07       Sum of Wgt.     613,84950%     .0248626                      Mean           .0282546Largest       Std. Dev.      .0213631
75%     .0343356         3.2273
90%     .0458472        3.32199       Variance       .0004564
95%     .0549695        4.61189       Skewness       68.11651
99%     .0837288        4.75981       Kurtosis       11569.69*/QValueAxis *axisX = qobject_cast<QValueAxis *>(chart->axes(Qt::Horizontal).at(0));axisX->setRange(-0.06,0.06);axisX->setTitleText("平均值");axisX->setLabelFormat("%.2f");QValueAxis *axisY = qobject_cast<QValueAxis *>(chart->axes(Qt::Vertical).at(0));axisY->setRange(0,0.12);axisY->setTitleText("标准差");axisY->setLabelFormat("%.2f");ui->widget->setRenderHint(QPainter::Antialiasing);ui->widget->setChart(chart);int i=0;auto labelsiter=labels.begin();for(auto &&point : data){if(end_flag)return;serieses[*labelsiter]->append(QPointF(point[0],point[1]));i++;labelsiter++;if(i%1000==0){QApplication::processEvents();}}
}void kmeans::on_pushButton_2_clicked()
{end_flag=true;
}

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/112919.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

六、事务-4.并发事务问题

一、脏读 事务A执行3个操作&#xff0c;第1个操作执行select语句&#xff0c;第2个操作执行update语句。 注意&#xff1a;事务没有执行完成的时候&#xff0c;事务是没有提交的。只有事务的3个操作完成之后&#xff0c;事务才会提交。 但事务A中第2个操作&#xff0c;会把表…

【阻塞队列】

文章目录 普通队列存在的问题单锁实现双锁实现 普通队列存在的问题 大部分场景要求分离向队列放入&#xff08;生产者&#xff09;、从队列拿出&#xff08;消费者&#xff09;两个角色、它们得由不同的线程来担当&#xff0c;而之前的实现根本没有考虑线程安全问题队列为空&a…

【python爬虫】—豆瓣电影Top250

豆瓣电影Top250 豆瓣榜单简介需求描述Python实现 豆瓣榜单简介 豆瓣电影 Top 250 榜单是豆瓣网站上列出的评分最高、受观众喜爱的电影作品。这个榜单包含了一系列优秀的影片&#xff0c;涵盖了各种类型、不同国家和时期的电影。 需求描述 使用python爬取top250电影&#xff…

xss-labs靶场通关详解

文章目录 前言level1level2level3level4level5level6level7level8level9level10level11level12level13level14level15level16level17level18level19&level20 前言 赶着假期结尾的时候&#xff0c;赶紧给自己找点任务做。现在对xss还是一知半解&#xff0c;只是了解个大概&a…

向函数传递参数(传地址)

过往课程 向函数传递参数&#xff08;传值、传引用、传const引用&#xff09; 传地址 向函数传地址&#xff0c;是指将变量的地址传递给函数。 函数通过声明参数为地址变量来接收一个变量的地址。 示例如下&#xff1a; #include <iostream> using namespace std;v…

Nginx百科之gzip压缩、黑白名单、防盗链、零拷贝、跨域、双机热备

引言 早期的业务都是基于单体节点部署&#xff0c;由于前期访问流量不大&#xff0c;因此单体结构也可满足需求&#xff0c;但随着业务增长&#xff0c;流量也越来越大&#xff0c;那么最终单台服务器受到的访问压力也会逐步增高。时间一长&#xff0c;单台服务器性能无法跟上业…

嵌入式Linux开发实操(十五):nand flash接口开发

# 前言 flash memory,分NAND和NOR: 如果说nor flash有个特点就是能执行代码,NOR并行接口具有地址和数据总线,spi flash更是主要用于存储代码,SPI(或QSPI)NOR代码可就地执行(XiP),一般系统要求flash闪存提供相对较高的频率和数据缓存的clocking。而nand flash主要用于…

每天刷题五道RHCSA/6-10题(Radhat8.2)

6.创建协作目录权限 mkdir /home/managers chown :sysmgrs /home/managers chmod 2770 /home/managers 测试&#xff1a; touch /home/managers/12345 ll /home/managers/12345 7.配置NTP systemctl status chronyd #查看状态 yum -y install chrony #如果没有安装&#xff0c…

element ui-Pagination

页面分为两个表格&#xff0c;当两边的表格数据量大时&#xff0c;分页样式就会受到影响&#xff0c;可以将跳转按钮的个数减少 页面分页代码如下 页面效果

rabbitmq的优先级队列

在我们系统中有一个 订单催付 的场景&#xff0c;我们的客户在天猫下的订单 , 淘宝会及时将订单推送给我们&#xff0c;如果在用户设定的时间内未付款那么就会给用户推送一条短信提醒&#xff0c;很简单的一个功能对吧&#xff0c;但是&#xff0c;tianmao商家对我们来说&#…

HTML学习笔记02

HTML笔记02 页面结构分析 元素名描述header标题头部区域的内容&#xff08;用于页面或页面中的一块区域&#xff09;footer标记脚部区域的内容&#xff08;用于整个页面或页面的一块区域&#xff09;sectionWeb页面中的一块独立区域article独立的文章内容aside相关内容或应用…

启莱OA treelist.aspx SQL注入

子曰&#xff1a;“为政以德&#xff0c;譬如北辰&#xff0c;居其所&#xff0c;而众星共之。” 漏洞复现 访问漏洞url&#xff1a; 使用SQLmap对参数 user 进行注入 漏洞证明&#xff1a; 文笔生疏&#xff0c;措辞浅薄&#xff0c;望各位大佬不吝赐教&#xff0c;万分感…

C++之“00000001“和“\x00\x00\x00\x01“用法区别(一百八十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Doris数据库BE——Stream load

Doris是一款快速、可靠的分布式大数据仓库&#xff0c;是由阿里巴巴集团在2016年底开源发起的。它采用了分布式存储和计算技术&#xff0c;可以处理海量的数据&#xff0c;并且可以实现实时查询和快速分析。 Doris 数据仓库有以下特点&#xff1a; 分布式计算&#xff1a;利用…

NRF52832一主多从ble_app_multilink_central

下载官方SDK后打开路径&#xff1a;nRF5SDK153059ac345\nRF5_SDK_15.3.0_59ac345\examples\ble_central\ble_app_multilink_central\pca10040\s132\arm5_no_packs 下的工程文件&#xff0c;确定把log开启 编译后下载完程序(要下载协议栈&#xff0c;这里用6.1.1的)&#xff0c…

yolo增加mobileone

代码地址&#xff1a;GitHub - apple/ml-mobileone: This repository contains the official implementation of the research paper, "An Improved One millisecond Mobile Backbone". 论文地址&#xff1a;https://arxiv.org/abs/2206.04040 MobileOne出自Apple&am…

前端调用电脑摄像头

项目中需要前端调用&#xff0c;所以做了如下操作 先看一下效果吧 主要是基于vue3&#xff0c;通过canvas把画面转成base64的形式&#xff0c;然后是把base64转成 file文件&#xff0c;最后调用了一下上传接口 以下是代码 进入页面先调用一下摄像头 navigator.mediaDevices.ge…

新版HBuilderX在uni_modules创建搜索search组件

1、创建自定义组件 my-search 新版HBuilder没有了 component 文件夹&#xff0c;但是有 uni_modules 文件夹&#xff0c;用来创建组件&#xff1a; 右键 uni_modules 文件夹&#xff0c;点击 新建uni_modules创建在弹出框&#xff0c;填写组件名字&#xff0c;例如&#xff1a…

htmx-使HTML更强大

‍本文作者是360奇舞团开发工程师 htmx 让我们先来看一段俳句: javascript fatigue: longing for a hypertext already in hand 这个俳句很有意思&#xff0c;是开源项目htmx文档中写的&#xff0c;意思是说&#xff0c;我们已经有了超文本&#xff0c;为什么还要去使用javascr…