深入理解协同过滤算法及其实现

导语

        个性化推荐系统在现代数字时代扮演着重要的角色,协助用户发现他们可能感兴趣的信息、产品或媒体内容。协同过滤是个性化推荐系统中最流行和有效的算法之一。

目录

协同过滤算法的原理

基于用户的协同过滤(User-Based Collaborative Filtering)

用户相似性计算

余弦相似度

Demo

皮尔逊相关系数

Demo

近邻用户选择

相似性度量方法

用户邻居的选择

阈值过滤

个性化相似性权重

评分预测

基于项目的协同过滤(Item-Based Collaborative Filtering)

协同过滤的不同变种

数据预处理

python示例

用户-项目评分矩阵的创建

基于用户的协同过滤

基于项目的协同过滤

性能优化和扩展


协同过滤算法的原理

基于用户的协同过滤(User-Based Collaborative Filtering)

用户相似性计算

当计算用户之间的相似性时,通常使用余弦相似度和皮尔逊相关系数等度量方法

余弦相似度

余弦相似度是一种用于测量两个非零向量之间夹角的相似性度量。在协同过滤中,用户可以被视为向量,其中每个维度代表一个项目,值表示用户对该项目的评分。

余弦相似度的计算步骤如下:

  1. 计算两个用户向量的点积(内积)。
  2. 计算每个用户向量的范数(模)。
  3. 使用点积和范数的乘积来计算余弦相似度。

余弦相似度公式如下:

Demo

import numpy as np# 两个用户的评分向量
user1_ratings = np.array([5, 4, 0, 0, 1])
user2_ratings = np.array([0, 0, 5, 4, 2])# 计算余弦相似度
cosine_similarity = np.dot(user1_ratings, user2_ratings) / (np.linalg.norm(user1_ratings) * np.linalg.norm(user2_ratings))print(f"余弦相似度: {cosine_similarity}")

皮尔逊相关系数

皮尔逊相关系数是一种用于衡量两个变量之间线性关系强度和方向的统计度量。在协同过滤中,它被用来度量用户评分之间的相关性。

皮尔逊相关系数的计算步骤如下:

  1. 计算两个用户评分向量的均值。
  2. 计算每个用户评分向量与均值的差异。
  3. 计算差异的皮尔逊相关系数。

皮尔逊相关系数的公式如下:

Demo

import numpy as np# 两个用户的评分向量
user1_ratings = np.array([5, 4, 0, 0, 1])
user2_ratings = np.array([0, 0, 5, 4, 2])# 计算均值
mean_user1 = np.mean(user1_ratings)
mean_user2 = np.mean(user2_ratings)# 计算差异
diff_user1 = user1_ratings - mean_user1
diff_user2 = user2_ratings - mean_user2# 计算皮尔逊相关系数
pearson_correlation = np.sum(diff_user1 * diff_user2) / (np.sqrt(np.sum(diff_user1**2)) * np.sqrt(np.sum(diff_user2**2)))print(f"皮尔逊相关系数: {pearson_correlation}")

近邻用户选择

相似性度量方法

        在选择相似用户时,首先需要定义相似性度量方法。常用的相似性度量方法包括余弦相似度、皮尔逊相关系数、Jaccard相似度等。选择合适的相似性度量方法取决于数据的性质和问题的特点。余弦相似度通常用于评分数据,而Jaccard相似度通常用于二进制数据(用户是否喜欢或点击某个项目)。

用户邻居的选择

        一旦选择了相似性度量方法,接下来需要确定要选择多少个相似用户。通常,选择的相似用户数量由一个参数 k 控制,称为 "近邻数"。增加 k 可以提高覆盖范围,但可能降低准确性,因为更多的用户可能包括不太相似的用户。选择合适的 k 是一个权衡的问题,可以通过交叉验证等技术来确定。

阈值过滤

        除了基于 k 的选择,还可以使用阈值过滤来选择相似用户。例如,只选择与目标用户相似度大于某个阈值的用户。这种方法可以帮助过滤掉不太相似的用户,提高推荐的准确性。阈值的选择通常需要基于实际问题和数据进行调整。

个性化相似性权重

        在某些情况下,不同用户之间的相似性可能有不同的重要性。例如,某些用户可能与目标用户在特定领域或时间段内的行为更相关。因此,可以为每个相似用户分配个性化的相似性权重,以更好地反映他们的贡献。

评分预测

        首先,我们需要选择一组相似用户,这些用户与目标用户在过去的行为上相似。我们可以使用之前计算的相似性度量(如余弦相似度或皮尔逊相关系数)来衡量用户之间的相似性。

        一旦选择了相似用户,我们需要获取这些相似用户对于尚未评分的项目的历史评分数据。这些评分数据将用于预测目标用户的评分。

        接下来,我们使用相似用户的历史评分数据来计算目标用户对于尚未评分项目的预测评分。

可以使用加权平均法或者基于加权回归的方法:

        

注:以下各部分不再详细展开,可在入门基础情况下自行扩展

基于项目的协同过滤(Item-Based Collaborative Filtering)

  • 项目相似性计算:详细讨论如何计算项目之间的相似性,使用余弦相似度等度量。
  • 近邻项目选择:深入讨论如何为目标用户找到他们已评分项目的相似项目,以生成更精准的推荐。
  • 评分预测:解释如何基于这些相似项目的历史评分来生成最终的推荐。

协同过滤的不同变种

  • 基于隐式反馈的协同过滤:处理隐式反馈数据,如用户浏览历史和点击记录。
  • 深度学习中的协同过滤:使用深度学习模型来改进协同过滤的性能。
  • 时序协同过滤:考虑时间因素来预测用户行为和兴趣的演变。

数据预处理

  • 数据准备:准备用户-项目评分数据,通常以DataFrame的形式表示。
  • 数据清洗:处理缺失值、异常值和重复数据,以确保数据质量。
  • 数据分割:将数据集分为训练集、验证集和测试集,以进行模型训练和评估。

python示例

用户-项目评分矩阵的创建

import pandas as pd# 创建用户-项目评分矩阵
ratings = pd.DataFrame({'User1': [5, 4, 0, 0, 1],'User2': [0, 0, 5, 4, 2],'User3': [4, 5, 0, 0, 0],'User4': [0, 0, 4, 5, 0]
}, index=['Item1', 'Item2', 'Item3', 'Item4', 'Item5'])

基于用户的协同过滤

from sklearn.metrics.pairwise import cosine_similarity# 计算用户之间的相似性(余弦相似度)
user_similarity = cosine_similarity(ratings.fillna(0))# 选择目标用户和要推荐的项目
target_user = 'User1'
target_item = 'Item3'# 预测目标用户对目标项目的评分
target_user_ratings = ratings.loc[:, target_user]
similar_users = user_similarity[ratings.index == target_item]
predicted_rating = (similar_users @ target_user_ratings) / sum(similar_users[0])print(f"预测用户{target_user}对项目{target_item}的评分为: {predicted_rating[0]}")

基于项目的协同过滤

# 预测目标用户对目标项目的评分
target_item_ratings = ratings.loc[target_item, :]
similar_items = item_similarity[ratings.columns == target_item]
predicted_rating = (similar_items @ target_item_ratings) / sum(similar_items[0])print(f"预测用户{target_user}对项目{target_item}的评分为: {predicted_rating[0]}")

性能优化和扩展

        在示例基础上还可以在以下方向做出优化

  • 模型改进:改进协同过滤模型,包括使用加权评分、考虑时间因素等方法,以提高推荐质量。
  • 大规模数据处理:处理大规模数据集,包括分布式计算和分布式存储的使用,以处理海量用户和项目的评分数据。
  • 实时推荐:介绍如何将协同过滤算法应用于实时推荐系统,以满足用户的即时需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116259.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在firefox浏览器下破解hackbar

目录 一、介绍: 二、安装教程 1、打开firefox浏览器插件管理扩展 2、在firefox浏览器下安装老版本Hackbar (1)首先删除之前安装的Hackbar插件: (2)采用从文件安装附件添加组: (3…

大数据课程K16——Spark的梯度下降法

文章作者邮箱:yugongshiyesina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的梯度下降法; ⚪ 了解Spark的梯度下降法家族(BGD,SGD,MBGD); ⚪ 掌握Spark的MLlib实现…

xx音乐app逆向分析

目标 看一下评论的请求 抓包 这里使用httpcanary 请求包如下 POST /index.php?rcommentsv2/getCommentWithLike&codeca53b96fe5a1d9c22d71c8f522ef7c4f&childrenidcollection_3_1069003079_330_0&kugouid1959585341&ver10&clienttoken7123ecc548ec46d…

五子棋游戏禁手算法的改进

五子棋游戏禁手算法的改进 五子棋最新的禁手规则: 1.黑棋禁手判负、白棋无禁手。黑棋禁手有“三三”(包括“四三三”)、“四四”(包括“四四三”)和“长连”。黑棋只能以“四三”取胜。 2.黑方…

Postman API测试之道:不止于点击,更在于策略

引言:API测试的重要性 在当今的软件开发中,API已经成为了一个不可或缺的部分。它们是软件组件之间交互的桥梁,确保数据的流动和功能的实现。因此,对API的测试显得尤为重要,它不仅关乎功能的正确性,还涉及到…

Idea安装免注册版ChatGPT

文章目录 一、前期准备二、开始使用 一、前期准备 1.准备Idea开发软件并打开(VS Code同理)! 2.【CtrlAltS】快捷键调出Settings窗口,如图 3.找到NexChatGPT 此插件不需要注册,可以直接使用(高级一些的需要会员收费限…

Unity编辑器扩展 | 编辑器扩展基础入门

前言 Unity编辑器扩展 | 编辑器扩展基础一、基本概念二、核心知识点 简述三、相关API 总结 前言 当谈到游戏开发工具,Unity编辑器是一个备受赞誉的平台。它为开发者提供了一个强大且灵活的环境,使他们能够创建令人惊叹的游戏和交互式体验。然而&#xf…

视频集中存储/云存储/磁盘阵列/视频监控管理平台EasyCVR接入海康SDK后视频播放崩溃的问题排查

视频集中存储/云存储/磁盘阵列/视频监控管理平台EasyCVR可支持海量视频的轻量化接入与汇聚管理。在视频能力上,EasyCVR可实现视频直播、云端录像、检索与回放、云存储、告警上报、语音对讲、电子地图、H.265视频自动转码、服务器集群、AI智能分析接入以及平台级联等…

git文件夹内容详解

.git文件夹是Git版本控制系统在项目根目录下创建的隐藏文件夹,包含了Git仓库的所有相关信息。如下是.git文件夹中常见的一些内容及其作用: HEAD:指向当前所在的分支(或者是一个特定的提交)。 branches:存储…

yolov8机器视觉-工业质检

使用训练好的模型进行预测 yolo predict taskdetect model训练好的模型路径 source测试图片文件夹路径 showTrue效果展示 切换模型进行训练(yolov8s) 修改main.py训练参数文件 使用云gpu进行训练,很方便:点击链接转至在线云gpu…

SpringMVC-学习笔记

文章目录 1.概述1.1 SpringMVC快速入门 2. 请求2.1 加载控制2.2 请求的映射路径2.3 get和post请求发送2.4 五种请求参数种类2.5 传递JSON数据2.6 日期类型参数传递 3.响应3.1 响应格式 4.REST风格4.1 介绍4.2 RESTful快速入门4.3 简化操作 1.概述 SpringMVC是一个基于Java的Web…

Javase | IO流

目录: 1.输入 (Intput/Read)2.输出 (Output/Write)3.IO4.IO流5.IO流的分类:5.1 分类总述5.2 按照 “流的方向” 进行分类5.3 按照 “读取数据的方式” 进行分类 6.IO包下要重点掌握的流:6.1 文件专属 (流)6.2 转换流 ( 将字节流转换为字符流 …

复杂性分析与算法设计:解锁计算机科学的奥秘

文章目录 算法复杂性分析的基本概念时间复杂度空间复杂度 常见的算法设计策略1. 分治法2. 贪心法3. 动态规划 算法设计的实际应用1. 网络路由2. 图像处理3. 人工智能 算法的选择和性能分析结论 🎉欢迎来到数据结构学习专栏~复杂性分析与算法设计:解锁计算…

Rust 学习笔记(持续更新中…)

一、 编译和运行是单独的两步 运行 Rust 程序之前必须先编译,命令为:rustc 源文件名 - rustc main.rs编译成功之后,会生成一个二进制文件 - 在 Windows 上还会生产一个 .pdb 文件 ,里面包含调试信息Rust 是 ahead-of-time 编译的…

1688API技术解析,实现关键词搜索淘宝商品(商品详情接口等)批量获取,可高并发

要使用1688API接口采集商品详情,可以按照以下步骤进行: 获取API接口权限:申请1688的app key和app secret,并获取access_token。 编写API请求代码:使用Python等编程语言,编写API请求代码。以下是一个Python…

python爬虫—requests

一、安装 pip install requests 二、基本使用 1、基本使用 类型 : models.Response r.text : 获取网站源码 r.encoding :访问或定制编码方式 r.url :获取请求的 url r.content :响应的字节类型 r.status_code :响应…

【unity插件】使用BehaviorDesigner插件制作BOSS的AI行为树

文章目录 前言素材插件一、基础使用二、敌人物理攻击三、敌人面向玩家四、敌人法术攻击五、随机进行攻击六、敌人不同的阶段推荐学习视频源码完结 前言 Behavior Designer是一个行为树插件,是一款为了让策划,程序员,美术人员方便使用的可视化…

IDEA 设置提示信息

IDEA 设置提示信息 File->Settings->Editor->Code Completion 取消勾选 Math case

python3.11教程1:python基础语法、程序控制、函数

文章目录 一、Python简介1.1 为什么学习python1.2 python安装与配置1.3 python解释器1.4 命令行参数1.4.1 sys.argv变量1.4.2 -c和-m选项 1.5 解释器的运行环境1.5.1 编码格式1.5.2 编码声明 二、Python基础语法2.1 行结构2.2 变量(标识符)2.3 字节串2.4…

【实训项目】传道学习助手APP设计

1.设计摘要 跨入21世纪以来,伴随着时代的飞速发展,国民对教育的重视度也有了进一步的提升。我们不难发现虽然很多学习内容有学习资料或者答案,但是这些内容并不能达到让所有求学的人对所需知识进行完全地理解与掌握。所以我们需要进行提问与求助。那么一…