【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)


一、学习资料

(LGBM)是一种基于梯度增强决策树(GBDT)算法。
本次研究三个内容,分别是回归预测,二分类预测和多分类预测
参考链接:

lightgbm原理参考链接:
训练过程评价指标metric函数参考链接:
lightgbm参数介绍参考链接:
lightgbm调参参考链接:


二、回归预测(多输入单输出)

1.数据设置
数据(103个样本,7输入1输出)
2.预测结果
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.参数设置

parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='rmse';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05; %越大,训练集效果越好
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=1;

4.训练过程

[   1]  train rmse 0.208872
[   2]  train rmse 0.203687
[   3]  train rmse 0.202175
[   4]  train rmse 0.200801
[   5]  train rmse 0.199554
[   6]  train rmse 0.196124
[   7]  train rmse 0.193003
[   8]  train rmse 0.192100
[   9]  train rmse 0.189259
[  10]  train rmse 0.186576
............
[ 490]  train rmse 0.052932
[ 491]  train rmse 0.052870
[ 492]  train rmse 0.052847
[ 493]  train rmse 0.052830
[ 494]  train rmse 0.052820
[ 495]  train rmse 0.052771
[ 496]  train rmse 0.052689
[ 497]  train rmse 0.052619
[ 498]  train rmse 0.052562
[ 499]  train rmse 0.052506
[ 500]  train rmse 0.052457
bestIteration: 500
训练集数据的R2为:0.94018
测试集数据的R2为:0.87118
训练集数据的MAE为:1.365
测试集数据的MAE为:2.3607
训练集数据的MBE为:-0.079848
测试集数据的MBE为:-1.0132

5.特征变量敏感性分析

在这里插入图片描述

三、分类预测(多输入单输出二分类)

1.数据设置
数据(357个样本,12输入1输出)
2.预测结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.参数设置

parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='binary_error';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05;
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=0;

4.训练过程

[   0]  train binary_error 0.020833
[   1]  train binary_error 0.020833
[   2]  train binary_error 0.020833
[   3]  train binary_error 0.020833
[   4]  train binary_error 0.020833
[   5]  train binary_error 0.020833
[   6]  train binary_error 0.020833
............
[ 191]  train binary_error 0.000000
[ 192]  train binary_error 0.000000
[ 193]  train binary_error 0.000000
[ 194]  train binary_error 0.000000
[ 195]  train binary_error 0.000000
[ 196]  train binary_error 0.000000
[ 197]  train binary_error 0.000000
[ 198]  train binary_error 0.000000
[ 199]  train binary_error 0.000000
bestIteration: 200

5.特征变量敏感性分析

在这里插入图片描述

四、分类预测(多输入单输出多分类)

1.数据设置
数据(357个样本,12输入1输出。4分类)
2.预测结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.参数设置

parameters=containers.Map;
parameters('task')='train';
parameters('boosting_type')='gbdt';
parameters('metric')='multi_error';
parameters('num_leaves')=31;
parameters('learning_rate')=0.05;
parameters('feature_fraction')=0.9;
parameters('bagging_fraction')=0.8;
parameters('bagging_freq')=5;
parameters('num_threads')=1;
parameters('verbose')=0;

4.训练过程

[   0]  train multi_error 0.112500
[   1]  train multi_error 0.066667
[   2]  train multi_error 0.066667
[   3]  train multi_error 0.066667
[   4]  train multi_error 0.062500
[   5]  train multi_error 0.058333
[   6]  train multi_error 0.054167
[   7]  train multi_error 0.054167
[   8]  train multi_error 0.058333
[   9]  train multi_error 0.058333
[  10]  train multi_error 0.054167
[  11]  train multi_error 0.054167
............
[ 190]  train multi_error 0.000000
[ 191]  train multi_error 0.000000
[ 192]  train multi_error 0.000000
[ 193]  train multi_error 0.000000
[ 194]  train multi_error 0.000000
[ 195]  train multi_error 0.000000
[ 196]  train multi_error 0.000000
[ 197]  train multi_error 0.000000
[ 198]  train multi_error 0.000000
[ 199]  train multi_error 0.000000
bestIteration: 200

5.特征变量敏感性分析

在这里插入图片描述

五、代码获取

CSDN后台私信回复“70期”即可获取下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系列五、Java操作RocketMQ简单消息之同步消息

一、概述 同步消息的特征是消息发出后会有一个返回值,即RocketMQ服务器收到消息后的一个确认,这种方式非常安全,但是性能上却没有那么高,而且在集群模式下,也是要等到所有的从机都复制了消息以后才会返回,适…

Linux系统Ubuntu以非root用户身份操作Docker的方法

本文介绍在Linux操作系统Ubuntu版本中,通过配置,实现以非root用户身份,进行Docker各项操作的具体方法。 在文章Linux系统Ubuntu配置Docker详细流程(https://blog.csdn.net/zhebushibiaoshifu/article/details/132612560&#xff0…

如何使用Puppeteer进行新闻网站数据抓取和聚合

导语 Puppeteer是一个基于Node.js的库,它提供了一个高级的API来控制Chrome或Chromium浏览器。通过Puppeteer,我们可以实现各种自动化任务,如网页截图、PDF生成、表单填写、网络监控等。本文将介绍如何使用Puppeteer进行新闻网站数据抓取和聚…

mac idea启动没反应 无法启动

遇到的问题如下: 启动idea,没反应 无法启动,不论破解还是别的原因,总之无法启动了 应用程序–找到idea–右击显示包内容–Contents–MacOS–打开idea 弹出框提示如下: 双击这个idea可执行文件 1)先查看日志…

JS中的new操作符

文章目录 JS中的new操作符一、什么是new?二、new经历了什么过程?三、new的过程分析四、总结 JS中的new操作符 参考:https://www.cnblogs.com/buildnewhomeland/p/12797537.html 一、什么是new? 在JS中,new的作用是通过…

【OpenCV入门】第七部分——图像的几何变换

文章结构 缩放dsize参数实现缩放fx参数和fy参数实现缩放 翻转仿射变换平移旋转倾斜 透视cmath模块 缩放 通过resize()方法可以随意更改图像的大小比例: dst cv2.resize(src, dsize, fx, fy, interpolation)src: 原始图像dsize: 输出图像的…

链表OJ练习(2)

一、分割链表 题目介绍: 思路:创建两个链表,ghead尾插大于x的节点,lhead尾插小于x的节点。先遍历链表。最后将ghead尾插到lhead后面,将大小链表链接。 我们需要在创建两个链表指针,指向两个链表的头节点&…

深入了解Docker镜像操作

Docker是一种流行的容器化平台,它允许开发者将应用程序及其依赖项打包成容器,以便在不同环境中轻松部署和运行。在Docker中,镜像是构建容器的基础,有些家人们可能在服务器上对docker镜像的操作命令不是很熟悉,本文将深…

Android安卓实战项目(13)---记账APP详细记录每天的收入和支出并且分类统计【生活助手类APP】强烈推荐自己也在用!!!(源码在文末)

Android安卓实战项目(13)—记账APP详细记录每天的收入和支出并且分类统计【生活助手类APP】强烈推荐自己也在用!!!(源码在文末🐕🐕🐕) 一.项目运行介绍 B站…

如何确认linux的包管理器是yum还是apt,确认之后安装其他程序的时候就需要注意安装命令

打开终端 输入apt,下图中提示未找到命令,则基本上包管理工具就是用yum的 输入yum,我们看到有打印信息,则说明包管理工具是yum的,离线安装命令使用rpm

MongoDB - 安装

一、Docker安装MongoDB 1. 安装 安装版本: 7.0.0 docker run -itd --name mongodb -v C:\\data\\mongodb\\data:/data/db -p 27017:27017 mongo:7.0.0 --auth-v: 将容器目录/data/db映射到本地C:\\data\\mongodb\\data目录,防止容器删除数据丢失-p: 端口映射--aut…

设计模式-4--原型模式(Prototype Pattern)

一、什么是原型模式 原型模式(Prototype Pattern)是一种创建型设计模式,它的主要目的是通过复制现有对象来创建新的对象,而无需显式地使用构造函数或工厂方法。这种模式允许我们创建一个可定制的原型对象,然后通过复制…

html5——前端笔记

html 一、html51.1、理解html结构1.2、h1 - h6 (标题标签)1.3、p (段落和换行标签)1.4、br 换行标签1.5、文本格式化1.6、div 和 span 标签1.7、img 图像标签1.8、a 超链接标签1.9、table表格标签1.9.1、表格标签1.9.2、表格结构标签1.9.3、合并单元格 1.10、列表1.10.1、ul无序…

六、vim编辑器的使用

1、编辑器 (1)编辑器就是一款软件。 (2)作用就是用来编辑文件,譬如编辑文字、编写代码。 (3)Windows中常用的编辑器,有自带的有记事本(notepad),比较好用的notepad、VSCode等。 (4)Linux中常用的编辑器,自带的最古老的vi&…

栈和队列篇

目录 一、栈 1.栈的概念及结构 1.1栈的概念 1.2栈的结构示意图 2.栈的实现 2.1支持动态增长的栈的结构 2.2压栈(入栈) 2.3出栈 2.4支持动态增长的栈的代码实现 二、队列 1.队列的概念及结构 1.1队列的概念 1.2队列的结构示意图 2.队列的实…

安防监控/视频存储/视频汇聚平台EasyCVR接入海康Ehome车载设备出现收流超时的原因排查

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。视频汇聚平台既具…

uni-app之android项目云打包

1,项目根目录,找到mainfest.json,如果appid是空的,需要生成一个appid 2,点击重新获取appid,这个时候需要登录,那就输入账号密码登录下 3,登陆后可以看到获取appid成功 4,…

四轴飞行器的电池研究(MatlabSimulink仿真)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

【力扣每日一题】2023.8.31 一个图中连通三元组的最小度数

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目给我们一个无向图,要我们找出三个节点,这三个节点他们两两相连,这三个节点除了连接到对方的其他线…

Windows下Redis的安装

文章目录 一,Redis介绍二,Redis下载三,Redis安装-解压四,Redis配置五,Redis启动和关闭(通过terminal操作)六,Redis连接七,Redis使用 一,Redis介绍 远程字典服务,一个开源的,键值对形式的在线服务框架,值支持多数据结构,本文介绍windows下Redis的安装,配置相关,官网默认下载的是…