YOLOV8模型使用-检测-物体追踪

这个最新的物体检测模型,很厉害的样子,还有物体追踪的功能。

有官方的Python代码,直接上手试试就好,至于理论,有想研究在看论文了╮(╯_╰)╭


简单介绍

YOLOv8 中可用的模型

YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。用来实际使用的时候选权重模型。

| YOLOv8n | YOLOv8s | YOLOv8m | YOLOv8l | YOLOv8x |

其他介绍,就不用管了,上手玩一下要紧。看一下几个官方介绍图片就懂了:

请添加图片描述
请添加图片描述

这里可以看到,有物体检测识别,检测,分类,轨迹,姿态的功能,下面就上手试试。


部署-简单使用【超简单】

前提安装好Python,版本需要Python>=3.8 我的是 Python 3.11.3

视频图片识别

  1. 首先,先下载官方的代码。官网代码

  2. 执行安装与检测:【执行位置是在项目目录下】

pip install -r requirements.txt
pip install ultralytics# 执行这个,会自动下载模型
# Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to 'yolov8n.pt'...
# source 替换成需要检测的本地图片即可
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'# 也可以如下对视频进行检测
yolo task=detect mode=predict model=yolov8n.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4  show=True#实例分割
yolo task=segment  mode=predict model=yolov8n-seg.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4  show=True
  1. 看看这个检测出来的效果:
    请添加图片描述
    请添加图片描述请添加图片描述

  2. 是不是灰常的简单,[]( ̄▽ ̄)*

  3. 就酱紫,后面在试试其他功能。


视频流,摄像头识别

这个处理只需要把来源替换成0即可,就像这样

yolo task=detect mode=predict model=yolov8n.pt source=0 show=True

视频追踪-绘制随时间变化的轨迹【这个有意思】

可以用于视频追踪的模型是:YOLOv8n, YOLOv8n-seg and YOLOv8n-pose 【以8n举例子】

yolo track model=yolov8n.pt source=0 show=True 

这个追踪的效果就是,在识别里面多了一个ID表示固定的物体。

以下是官方代码改了一下,绘制随时间变化的轨迹

效果是这样的:
请添加图片描述

这个车流比较多感觉轨迹画的不怎么好看。

请添加图片描述

哈哈,这个卡车还识别错了 。。╮(╯▽╰)╭

不过这里可以绘制轨迹,就也可以统计这个ID物体在视频中存在的时间什么的。如果放在门店咖啡厅的摄像头里面,就可以看到顾客的停留时间。

这个轨迹变化绘制+物体追踪代码如下:

# 绘制随时间变化的轨迹
from collections import defaultdictimport cv2
import numpy as npfrom ultralytics import YOLO# Load the YOLOv8 model
model = YOLO('yolov8n.pt')# Open the video file
# video_path = "C:\\Users\\Administrator\\Desktop\\1.ts" 
video_path = 0
cap = cv2.VideoCapture(video_path)# Store the track history
track_history = defaultdict(lambda: [])# 用于保存图像
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out_cat = cv2.VideoWriter("C:\\Users\\Administrator\\Desktop\\save.mp4", fourcc, 24, (352, 288), True)  # 保存位置/格式# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 tracking on the frame, persisting tracks between framesresults = model.track(frame, persist=True)# Get the boxes and track IDsboxes = results[0].boxes.xywh.cpu()if results[0].boxes.id is not None:track_ids = results[0].boxes.id.int().cpu().tolist()# Visualize the results on the frameannotated_frame = results[0].plot()# Plot the tracksif results[0].boxes.id is not None:for box, track_id in zip(boxes, track_ids):x, y, w, h = boxtrack = track_history[track_id]track.append((float(x), float(y)))  # x, y center pointif len(track) > 30:  # retain 90 tracks for 90 framestrack.pop(0)# Draw the tracking linespoints = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))cv2.polylines(annotated_frame, [points], isClosed=False, color=(track_id*10%255, 100, 255), thickness=2)# Display the annotated framecv2.imshow("YOLOv8 Tracking", annotated_frame)# out_cat.write(annotated_frame)  # 保存视频# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

参考资料:

  • V8官方开源地址:ultralytics :https://github.com/ultralytics/ultralytics
  • MMYOLO 开源地址:https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov8
  • https://zhuanlan.zhihu.com/p/633779645?utm_id=0
  • https://blog.csdn.net/caobin_cumt/article/details/131009067
  • 关键的资料:https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117241.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux常用命令——cupsenable命令

在线Linux命令查询工具 cupsenable 启动指定的打印机 补充说明 cupsenable命令用于启动指定的打印机。 语法 cupsenable(选项)(参数)选项 -E:当连接到服务器时强制使用加密; -U:指定连接服务器时使用的用户名; -u&#xff…

VS + QT 封装带UI界面的DLL

一、创建编译DLL的项目 1.新建Qt Class Liabrary 2.新建项目,选择Qt Widgets Class 3.新建C类,可以在此类里面写算法函数用于调用。 4.下面是添加完Qt窗体类和C类之后的项目截图 5.修改头文件并编译 将uidemo_global.h中的ifdef内容复制到dialog.h上…

Python库-coverage测试覆盖率

Coverage.py 是用于测量Python程序代码覆盖率的工具。它 监视程序,注意代码的哪些部分已执行,然后 分析源以识别可以执行但未执行的代码。 覆盖率测量通常用于衡量测试的有效性。它 可以显示测试正在执行代码的哪些部分,以及哪些部分是 不。…

C++:类和对象(下)

目录 1. 再谈构造函数 1.1构造函数题赋值 1.2初始化列表 初始化列表有什么用呢? 1.3 explicit关键字 2. Static成员 2.1概念 2.2特性 3. 友元 3.1友元函数 3.2友元类 4. 内部类(了解) 5.匿名对象 6.拷贝对象时的一些编译器优化 学习目标 1. 再谈构造函数2. Stat…

在访问一个网页时弹出的浏览器窗口,如何用selenium 网页自动化解决?

相信大家在使用selenium做网页自动化时,会遇到如下这样的一个场景: 在你使用get访问某一个网址时,会在页面中弹出如上图所示的弹出框。 首先想到是利用Alert类来处理它。 然而,很不幸,Alert类处理的结果就是没有结果…

Hive-安装与配置(1)

🥇🥇【大数据学习记录篇】-持续更新中~🥇🥇 个人主页:beixi 本文章收录于专栏(点击传送):【大数据学习】 💓💓持续更新中,感谢各位前辈朋友们支持…

OpenCV(十):图像缩放、翻转、拼接的介绍与使用

目录 (1)图像缩放:resize() (2)图像翻转: flip() (3)图像拼接:hconcat() 和vconcat() (1)图像缩放:resize() 使用 cv2.resize() 函…

leetcode 1022.从根到叶的二进制数之和

⭐️ 题目描述 🌟 leetcode链接:https://leetcode.cn/problems/sum-of-root-to-leaf-binary-numbers/description/ 代码: class Solution { public:int sum (TreeNode* root , int num 0) {if (root nullptr) {return 0;}int cur num r…

【数学建模竞赛】各类题型及解题方案

评价类赛题建模流程及总结 建模步骤 建立评价指标->评价体系->同向化处理(都越多越好或越少越少)->指标无量纲处理 ->权重-> 主客观->合成 主客观评价问题的区别 主客观概念主要是在指标定权时来划分的。主观评价与客观评价的区别…

QUdpSocket Class

继承自 QAbstractSocket 类 QUdpSocket类提供UDP套接字。 UDP(用户数据报协议)是一种轻量级、不可靠、面向数据报、无连接的协议。它可以在可靠性不重要的情况下使用。QUdpSocket是QAbstractSocket的一个子类,它允许您发送和接收UDP数据报。 使用这个类最常见的方法…

一文1800字从0到1使用Python Flask实战构建Web应用

Python Flask是一个轻量级的Web框架,它简单易用、灵活性高,适用于构建各种规模的Web应用。本文将介绍如何使用Python Flask框架来实战构建一个简单的Web应用,并展示其基本功能和特性。 第一部分:搭建开发环境 在开始之前我们需要…

docker部署nginx,部署springboot项目,并实现访问

一、先部署springboot项目 1、安装docker: yum install docker -y 2、启动docker: service docker start 重启: service docker restart 3、查看版本: docker -v 4、使设置docker.service生效(路径:…

游戏思考30(补充版):关于逆水寒铁牢关副本、白石副本和技能的一些注释(2023/0902)

前期介绍 我是一名逆水寒的玩家,做一些游戏的笔记当作攻略记录下来,荣光不朽-帝霸来源视频连接 传送门 一、旧版铁牢关(非逆水寒老兵服) (1)老一:巨鹰 1)机制一:三阵风…

Bert和LSTM:情绪分类中的表现

一、说明 这篇文章的目的是评估和比较 2 种深度学习算法(BERT 和 LSTM)在情感分析中进行二元分类的性能。评估将侧重于两个关键指标:准确性(衡量整体分类性能)和训练时间(评估每种算法的效率)。…

TDesign在按钮上加入图标组件

在实际开发中 我们经常会遇到例如 添加或者查询 我们需要在按钮上加入图标的操作 TDesign自然也有预备这样的操作 首先我们打开文档看到图标 例如 我们先用某些图标 就可以点开下面的代码 可以看到 我们的图标大部分都是直接用tdesign-icons-vue 导入他的组件就可以了 而我…

LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度 今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成&#x…

Flutter启动页

效果图 import dart:async; import package:flutter/cupertino.dart; import package:flutter/material.dart; import jumpPage.dart;class TransitPage extends StatefulWidget {const TransitPage({super.key});overrideState<TransitPage> createState() > _Trans…

【项目 计网8】4.23 TCP状态转换 4.24半关闭、端口复用

文章目录 4.23 TCP状态转换关于三次握手四次挥手 4.24半关闭、端口复用端口复用 4.23 TCP状态转换 2MSL(Maximum Segment Lifetime) 主动断开连接的一方&#xff0c;最后进入一个TIME_WAIT状态&#xff0c;这个状态会持续&#xff1a;2msl msl&#xff1a;官方建议&#xff1a;…

Private market:借助ZK实现的任意计算的trustless交易

1. 引言 Private market&#xff0c;借助zk-SNARKs和以太坊来 隐私且trustlessly selling&#xff1a; 1&#xff09;以太坊地址的私钥&#xff08;ECDSA keypair&#xff09;2&#xff09;EdDSA签名3&#xff09;Groth16 proof&#xff1a;借助递归性来匿名交易Groth16 proo…

NCCoE发布“向后量子密码学迁移”项目进展情况说明书

近日&#xff0c;NIST下属的国家网络安全中心&#xff08;NCCoE&#xff09;发布了一份向后量子密码学迁移&#xff08;Migration to Post-Quantum Cryptography&#xff09;项目情况说明书。该文档简要概述了向后量子密码学迁移项目的背景、目标、挑战、好处和工作流程&#x…