Maven jar 包下载失败问题处理

Maven jar 包下载失败问题处理

  • 1.配置好国内的Maven源
  • 2.重新下载
  • 3. 其他问题

1.配置好国内的Maven源

打开⾃⼰的 Idea 检测 Maven 的配置是否正确,正确的配置如下图所示:


检查项⼀共有两个:

  1. 确认右边的两个勾已经选中,如果没有请点击选中.
  2. 检查 User Settings file 的 settings.xml ⽂件是否存在:
    • 如果不存在,复制下⾯配置了国内源的 settings.xml ⽂件,放到 User Settings file ⽬录下.
    • 如果存在,检查 settings.xml 是否配置了国内源。

注意事项:两个路径中不能出现中⽂!不能出现中⽂!不能出现中⽂!

正确的settings.xml⽂件(配置了国内源)

配置的国内源的 settings.xml 配置如下:

<settings xmlns="http://maven.apache.org/SETTINGS/1.1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.1.0 http://maven.apache.org/xsd/settings-1.1.0.xsd">
<localRepository>C:\Users\intel\.m2\repository</localRepository><mirrors><mirror><id>alimaven</id><name>aliyun maven</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url><mirrorOf>central</mirrorOf> </mirror></mirrors>
</settings>

2.重新下载

jar包

经过了第⼀步配置好国内maven源之后,⼀定要先配置好第⼀步!⼀定要先配置好第⼀步!⼀定要先配置好第⼀步!多检查⼏遍,然后删除本地存储 jar 包的⽬录,本地存储 jar 包的⽬录如下:

删除本地jar⽬录中的所有⽂件,切换到 Idea 中,重新下载 jar 包,如下图所示:

待下载完成,如果还是下载失败那就是本地⽹速问题,重复步骤 1 和步骤 2 直到下载成功!重复步骤 1 和步骤 2 直到下载成功!重复步骤 1 和步骤 2 直到下载成功!

3. 其他问题

如果经过上⾯配置,还是下载不了,那么有可能是以下问题:

  1. 上⾯的步骤没看仔细: 重新认真的逐字逐句的观看和配置;
  2. Maven 路径中出现中⽂:如果出现中⽂会导致下载了 jar 包,但是在项⽬中不能正常使⽤;
  3. 当前⽹络运营商有问题:当前所在区域连接的⽹络运营商(中国电信、移动…)连接数据源有问 题,尝试更好⽹络,使⽤⼿机热点或朋友的⼿机热点尝试,如果还是还⾏,间隔 4 ⼩时之后再试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12146.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端】ES6模块化

文章目录 1. 模块化概述1.1 什么是模块化?1.2 为什么需要模块化? 2. 有哪些模块化规范3. CommonJs3.1 导出数据3.2 导入数据3.3 扩展理解3.4 在浏览器端运行 4.ES6模块化4.1 浏览器运行4.2 在node服务端运行4.3 导出4.3.1 分别导出4.3.2 统一导出4.3.3 默认导出4.3.4 混用 4.…

强化学习笔记(5)——PPO

PPO视频课程来源 首先理解采样期望的转换 变量x在p(x)分布下&#xff0c;函数f(x)的期望 等于f(x)乘以对应出现概率p(x)的累加 经过转换后变成 x在q(x)分布下&#xff0c;f(x)*p(x)/q(x) 的期望。 起因是&#xff1a;求最大化回报的期望&#xff0c;所以对ceta求梯度 具体举例…

20-30 五子棋游戏

20-分析五子棋的实现思路_哔哩哔哩_bilibili20-分析五子棋的实现思路是一次性学会 Canvas 动画绘图&#xff08;核心精讲50个案例&#xff09;2023最新教程的第21集视频&#xff0c;该合集共计53集&#xff0c;视频收藏或关注UP主&#xff0c;及时了解更多相关视频内容。https:…

【HTML入门】Sublime Text 4与 Phpstorm

文章目录 前言一、环境基础1.Sublime Text 42.Phpstorm(1)安装(2)启动Phpstorm(3)“启动”码 二、HTML1.HTML简介(1)什么是HTML(2)HTML版本及历史(3)HTML基本结构 2.HTML简单语法(1)HTML标签语法(2)HTML常用标签(3)表格(4)特殊字符 总结 前言 在当今的软件开发领域&#xff0c…

Kubernetes学习之包管理工具(Helm)

一、基础知识 1.如果我们需要开发微服务架构的应用&#xff0c;组成应用的服务可能很多&#xff0c;使用原始的组织和管理方式就会非常臃肿和繁琐以及较难管理&#xff0c;此时我们需要一个更高层次的工具将这些配置组织起来。 2.helm架构&#xff1a; chart:一个应用的信息集合…

Kamailio 不通过 dmq 实现注册复制功能

春节期间找到一篇文章&#xff0c;需要 fg 才能看到&#xff1a; https://medium.com/tumalevich/kamailio-registration-replication-without-dmq-65e225f9a8a7 kamailio1 192.168.56.115 kamailio2 192.168.56.116 kamailio3 192.168.56.117 route[HANDLE_REPLICATION] {i…

grpc 和 http 的区别---二进制vsJSON编码

gRPC 和 HTTP 是两种广泛使用的通信协议&#xff0c;各自适用于不同的场景。以下是它们的详细对比与优势分析&#xff1a; 一、核心特性对比 特性gRPCHTTP协议基础基于 HTTP/2基于 HTTP/1.1 或 HTTP/2数据格式默认使用 Protobuf&#xff08;二进制&#xff09;通常使用 JSON/…

Intel 与 Yocto 项目的深度融合:全面解析与平台对比

在嵌入式 Linux 领域&#xff0c;Yocto 项目已成为构建定制化 Linux 发行版的事实标准&#xff0c;广泛应用于不同架构的 SoC 平台。Intel 作为 x86 架构的领导者&#xff0c;在 Yocto 生态中投入了大量资源&#xff0c;为其嵌入式处理器、FPGA 和 AI 加速硬件提供了完整的支持…

kubernetes(二)

文章目录 NamespacePodLabelDeploymentService Namespace 在Kubernetes系统中&#xff0c;Namespace是一种至关重要的资源类型&#xff0c;其主要功能在于实现多套环境的资源隔离或者多租户的资源隔离&#xff0c;默认情况下所有的Pod都能够相互访问&#xff0c;但如果不想让两…

巧妙利用数据结构优化部门查询

目录 一、出现的问题 部门树接口超时 二、问题分析 源代码分析 三、解决方案 具体实现思路 四、优化的效果 一、出现的问题 部门树接口超时 无论是在A项目还是在B项目中&#xff0c;都存在类似的页面&#xff0c;其实就是一个部门列表或者叫组织列表。 从页面的展示形式…

【数据分析】案例04:豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask)

豆瓣电影Top250的数据分析与Web网页可视化(numpy+pandas+matplotlib+flask) 豆瓣电影Top250官网:https://movie.douban.com/top250写在前面 实验目的:实现豆瓣电影Top250详情的数据分析与Web网页可视化。电脑系统:Windows使用软件:PyCharm、NavicatPython版本:Python 3.…

【线程】基于环形队列的生产者消费者模型

1 环形队列 环形队列采用数组来模拟&#xff0c;用取模运算来模拟环状特性。 1.如何判断环形队列为空或者为满? 当环形队列为空时&#xff0c;头和尾都指向同一个位置。当环形队列为满时&#xff0c;头和尾也都指向同一个位置。 因此&#xff0c; 可以通过加计数器或者标记…

Vue指令v-html

目录 一、Vue中的v-html指令是什么&#xff1f;二、v-html指令与v-text指令的区别&#xff1f; 一、Vue中的v-html指令是什么&#xff1f; v-html指令的作用是&#xff1a;设置元素的innerHTML&#xff0c;内容中有html结构会被解析为标签。 二、v-html指令与v-text指令的区别…

OPENGLPG第九版学习 - 着色器基础

文章目录 2.1 着色器与OpenGL2.2 0penGL的可编程管线2.3 OpenGL着色语言GLSL概述2.3.1 使用GLSL构建着色器变量的声明变量的作用域变量的初始化构造函数 、 类型转换聚合类型访问向量和矩阵中的元素结构体数组多维数组 2.3.2 存储限制符const 存储限制符in 存储限制符out 存储限…

路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)

鸽群算法(Pigeon-inspired Optimization, PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。 更多的仿生群体算法…

Docker Compose的使用

文章首发于我的博客&#xff1a;https://blog.liuzijian.com/post/docker-compose.html 目录 Docker Compose是什么Docker Compose安装Docker Compose文件Docker Compose常用命令案例&#xff1a;部署WordPress博客系统 Docker Compose是什么 Docker Compose是Docker官方的开源…

AP单类平均准确率

P_true N_true P_pred TP Fp N_pred FN TNP NTP&#xff08;真正样本&#xff0c;与真实框IoU大于阈值的框&#xff09; FP&#xff08;假正样本&#xff0c;与真实框IoU小于阈值的框&#xff09; TN&#xff08;真负样本&#xff0c;背景&#xff09;…

Leetcode—1427. 字符串的左右移【简单】Plus

2025每日刷题&#xff08;206&#xff09; Leetcode—1427. 字符串的左右移 实现代码 class Solution { public:string stringShift(string s, vector<vector<int>>& shift) {// shift[i] [dir, amount]// dir 0(左) or 1(右)// 左表示正, 右表示负int len…

机器学习10

自定义数据集 使用scikit-learn中svm的包实现svm分类 代码 import numpy as np import matplotlib.pyplot as pltclass1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])class2_points np.array([[3.2, 3.2],[3.7, 2.9],…

股票入门知识

股票入门&#xff08;更适合中国宝宝体制&#xff09; 股市基础知识 本文介绍了股票的基础知识&#xff0c;股票的分类&#xff0c;各板块发行上市条件&#xff0c;股票代码&#xff0c;交易时间&#xff0c;交易规则&#xff0c;炒股术语&#xff0c;影响股价的因素&#xf…