【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码

 目录

1 基本子图绘制示例

2 子图网格布局

3 调整子图的尺寸

4 多行多列的子图布局

5 子图之间的共享轴

6 绘制多个子图类型

7 实战:

绘制一个大图,里面包含6个不同类别的子图,不均匀布局。


绘制子图(subplots)是在Matplotlib中创建多个子图的常见任务。通过子图,您可以将多个图形放置在同一图表中,以便比较不同的数据或可视化多个相关的图形。一般流程如下:

  1. 创建图形对象:首先,您需要创建一个图形对象,可以使用plt.figure()函数来完成。该图形对象代表整个图形窗口,您可以在其中放置多个子图。

  2. 添加子图:使用fig.add_subplot()函数来添加子图。这个函数接受三个参数,分别是行数、列数和子图的索引位置。例如,fig.add_subplot(2, 2, 1)表示将创建一个2x2的网格,并在第一个位置创建子图。

  3. 绘制图表:在每个子图中,您可以使用Matplotlib的绘图函数(如plot()scatter()bar()等)来绘制不同类型的图表。

  4. 子图属性设置:您可以设置每个子图的标题、坐标轴标签、背景颜色、图例等属性,以使其更具可读性和吸引力。

  5. 调整子图布局:Matplotlib允许您调整子图之间的间距,以便更好地组织和排列它们。可以使用plt.subplots_adjust()函数来完成这个任务。

  6. 显示图形:一旦您创建并设置了所有子图,使用plt.show()函数来显示整个图形。

1 基本子图绘制示例

首先,让我们看一个基本的子图绘制示例。使用plt.subplots()函数,您可以创建一个包含多个子图的图表,并将这些子图放置在一个网格中。以下是一个基本的示例:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建一个包含两个子图的图表
fig, axes = plt.subplots(nrows=1, ncols=2)# 在第一个子图中绘制正弦函数
axes[0].plot(x, y1, label='Sine Function', color='blue')
axes[0].set_title('Sine Function')# 在第二个子图中绘制余弦函数
axes[1].plot(x, y2, label='Cosine Function', color='red')
axes[1].set_title('Cosine Function')# 显示图例
axes[0].legend()
axes[1].legend()# 显示图形
plt.show()

运行:

        以上代码演示了如何使用Matplotlib创建一个包含两个子图的图表。这两个子图分别显示了正弦函数和余弦函数的曲线。

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦值和余弦值作为y轴数据。
  3. 使用plt.subplots函数创建一个图表和一个由子图对象组成的数组。其中nrows=1表示创建一个行数为1,列数为2的图表。
  4. 在第一个子图中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"。
  5. 在第二个子图中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"。
  6. 显示图例,使用legend函数,在每个子图中显示曲线的标签。
  7. 最后调用plt.show()来显示图形。

2 子图网格布局

        Matplotlib还允许您以更复杂的方式布局子图,以满足您的需求。您可以使用gridspec模块来实现更灵活的子图布局。以下是一个示例,演示如何使用gridspec创建子图网格:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)# 创建一个包含多个子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(10, 4))
gs = gridspec.GridSpec(1, 3)  # 1行3列的子图布局# 第一个子图
ax1 = plt.subplot(gs[0, 0])
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Sine Function')
ax1.legend()# 第二个子图
ax2 = plt.subplot(gs[0, 1])
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.set_title('Cosine Function')
ax2.legend()# 第三个子图
ax3 = plt.subplot(gs[0, 2])
ax3.plot(x, y3, label='Tangent Function', color='green')
ax3.set_title('Tangent Function')
ax3.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

        这个示例创建了一个包含三个子图的图表,使用gridspec模块定义了子图的布局。每个子图包含不同的三角函数,并具有自己的标题和图例。

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦、余弦和正切值作为y轴数据。
  3. 创建一个Figure对象,设置图表的大小为(10, 4)。
  4. 使用gridspec.GridSpec函数创建一个网格布局,指定1行3列的子图布局。
  5. 在第一个子图(ax1)中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"并显示图例(legend)。
  6. 在第二个子图(ax2)中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"并显示图例。
  7. 在第三个子图(ax3)中绘制正切函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Tangent Function"并显示图例。
  8. 调用plt.tight_layout()函数来自动调整子图之间的距离。
  9. 最后调用plt.show()来显示图形。

3 调整子图的尺寸

以下是一些常用的参数,用于调整子图的尺寸和位置:

  1. nrowsncols:这两个参数用于指定子图的网格布局的行数和列数。例如,fig.add_subplot(2, 2, 1)表示一个2x2的网格布局,其中有4个子图。

  2. index:该参数指定子图在网格中的位置。例如,fig.add_subplot(2, 2, 1)表示在2x2的网格中的第一个位置创建子图。

  3. position:通过position参数,您可以设置子图的位置和大小,它是一个四元组,表示子图的左、下、宽度和高度。例如,fig.add_subplot(position=[0.1, 0.1, 0.8, 0.8])表示在图形中创建一个左上角偏移10%并且宽度和高度都为80%的子图。

  4. projection:用于指定子图的投影类型,例如3D子图、极坐标子图等。

  5. polar:一个布尔值,用于指定子图是否使用极坐标。默认为False。

您可以通过设置gridspec中每个子图的相对宽度来调整子图的尺寸。以下示例将第一个子图的宽度设置为其他两个子图的两倍:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)# 创建一个包含多个子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(12, 4))# 1行3列的子图布局,第一个子图宽度为其他两个的两倍
gs = gridspec.GridSpec(1, 3, width_ratios=[2, 1, 1]) # 第一个子图
ax1 = plt.subplot(gs[0, 0])
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Sine Function')
ax1.legend()# 第二个子图
ax2 = plt.subplot(gs[0, 1])
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.set_title('Cosine Function')
ax2.legend()# 第三个子图
ax3 = plt.subplot(gs[0, 2])
ax3.plot(x, y3, label='Tangent Function', color='green')
ax3.set_title('Tangent Function')
ax3.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

         以上代码演示了如何使用Matplotlib创建一个包含多个子图的图表,并使用gridspec来定义子图布局。代码的步骤如下:

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦、余弦和正切值作为y轴数据。
  3. 创建一个Figure对象,设置图表的大小为(12, 4)。
  4. 使用gridspec.GridSpec函数创建一个网格布局,指定1行3列的子图布局,并通过width_ratios参数设置第一个子图的宽度为其他两个子图的两倍。
  5. 在第一个子图(ax1)中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"并显示图例(legend)。
  6. 在第二个子图(ax2)中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"并显示图例。
  7. 在第三个子图(ax3)中绘制正切函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Tangent Function"并显示图例。
  8. 调用plt.tight_layout()函数来自动调整子图之间的距离。
  9. 最后调用plt.show()来显示图形。

4 多行多列的子图布局

        您可以使用gridspec创建多行多列的子图布局,以便在一个图表中组织更多的子图。以下示例演示了一个包含多行多列子图的图表:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)# 创建一个包含多行多列子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(3, 2)  # 3行2列的子图布局# 绘制多行多列的子图
for i in range(3):for j in range(2):ax = plt.subplot(gs[i, j])ax.plot(x, y, label='Sine Function', color='blue')ax.set_title(f'Subplot ({i+1}, {j+1})')ax.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

5 子图之间的共享轴

        您可以通过设置sharexsharey参数来共享子图之间的X轴或Y轴。以下示例演示了在子图之间共享X轴的情况:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建一个包含多个子图的图表
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(8, 6))# 第一个子图,共享X轴
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Shared X-Axis')
ax1.legend()# 第二个子图,共享X轴
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

共享Y轴示例:

        在这个示例中,我们创建了两个子图,通过sharey=True参数来共享Y轴。这两个子图分别绘制了sin函数和cos函数,并共享相同的Y轴刻度。整体标题用suptitle函数添加。这个示例演示了如何创建共享Y轴的子图。代码如下:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建两个子图,共享Y轴
fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(10, 4))# 在第一个子图上绘制sin函数
ax1.plot(x, y1, label='Sine Function', color='blue', linestyle='--')
ax1.set_title('Subplot 1: Sine Function')
ax1.set_xlabel('X-axis')
ax1.set_ylabel('Y-axis')
ax1.legend()# 在第二个子图上绘制cos函数
ax2.plot(x, y2, label='Cosine Function', color='red', linestyle='-')
ax2.set_title('Subplot 2: Cosine Function')
ax2.set_xlabel('X-axis')
ax2.legend()# 添加整体标题
plt.suptitle('Two Subplots Sharing Y-Axis', fontsize=16, fontweight='bold')# 显示图形
plt.show()

运行: 

6 绘制多个子图类型

        您可以在同一个图表中组合不同类型的子图,例如线图和散点图。以下示例演示了如何在同一图表中绘制多个子图类型:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
x_scatter = np.random.rand(50) * 2 * np.pi
y_scatter = np.sin(x_scatter)# 创建一个包含多个子图的图表
fig, axs = plt.subplots(2, 2, figsize=(10, 6))# 第一个子图:线图
axs[0, 0].plot(x, y1, label='Sine Function', color='blue')
axs[0, 0].set_title('Line Plot')
axs[0, 0].legend()# 第二个子图:散点图
axs[0, 1].scatter(x_scatter, y_scatter, label='Scatter Points', color='red', marker='o')
axs[0, 1].set_title('Scatter Plot')
axs[0, 1].legend()# 第三个子图:线图
axs[1, 0].plot(x, y2, label='Cosine Function', color='green')
axs[1, 0].set_title('Line Plot')
axs[1, 0].legend()# 第四个子图:散点图
axs[1, 1].scatter(x_scatter, y_scatter, label='Scatter Points', color='purple', marker='s')
axs[1, 1].set_title('Scatter Plot')
axs[1, 1].legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,并计算对应的正弦值和余弦值作为y轴数据。还生成了50个随机点用于绘制散点图。
  3. 创建一个包含2行2列子图的图表,使用 ​subplots​函数并设置 ​figsize​参数指定图表的大小。​subplots​函数会返回一个Figure对象和一个包含子图的Axes对象的二维数组。
  4. 在第一个子图(axs[0, 0])中绘制正弦函数的线图,使用 ​plot​函数,并指定标签(label)和颜色(color)。设置标题(set_title)为"Line Plot"并显示图例(legend)。
  5. 在第二个子图(axs[0, 1])中绘制散点图,使用 ​scatter​函数,并指定标签、颜色和标记(marker)类型。同样设置标题和图例。
  6. 在第三个子图(axs[1, 0])中绘制余弦函数的线图,使用 ​plot​函数,并指定标签和颜色。设置标题和图例。
  7. 在第四个子图(axs[1, 1])中绘制散点图,使用 ​scatter​函数,并指定标签、颜色和标记类型。同样设置标题和图例。
  8. 使用 ​tight_layout​函数调整子图之间的距离,使其更美观。
  9. 调用 ​show​函数显示图形。

7 实战:

绘制一个大图,里面包含6个不同类别的子图,不均匀布局。

第一行放一个子图,第二行放两个子图 ,第三行放三个子图 ,分别自适应设置子图的尺寸和背景色,示例与代码如下:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)# 创建图形
fig = plt.figure(figsize=(12, 8))# 在上方添加母图标题
fig.suptitle('Customized Subplots Example', fontsize=16, fontweight='bold') # fig.suptitle('Customized Subplots Example', fontsize=16, fontweight='bold', y=0.05) # 在下方添加母图标题# 调整子图的布局,增加垂直间距,避免子图之间有交叉
plt.subplots_adjust(hspace=0.5)# 第一行,一个子图,绘制线图
ax1 = fig.add_subplot(3, 1, 1)
ax1.plot(x, y, color='blue', label='Sine Function', linewidth=2, linestyle='--', marker='o', markersize=5)
ax1.set_title('Line Plot', fontsize=14)
ax1.set_facecolor('lightgray')
ax1.set_xlabel('X-axis', fontsize=12)
ax1.set_ylabel('Y-axis', fontsize=12)
ax1.legend()# 添加注释
ax1.annotate('Peak Point', xy=(np.pi/2, 1), xytext=(np.pi/2, 1.2),arrowprops=dict(facecolor='black', shrink=0.05),fontsize=12, bbox=dict(boxstyle='round,pad=0.3', edgecolor='black', facecolor='yellow'))# 第二行,两个子图,一个散点图,一个柱状图
ax2 = fig.add_subplot(3, 2, 3)
ax2.scatter(x, y, color='red', label='Scatter Plot', s=20)
ax2.set_title('Scatter Plot', fontsize=14)
ax2.set_facecolor('lightyellow')
ax2.set_xlabel('X-axis', fontsize=12)
ax2.set_ylabel('Y-axis', fontsize=12)
ax2.legend()ax3 = fig.add_subplot(3, 2, 4)
ax3.bar(x, y, color='green', label='Bar Plot', alpha=0.7)
ax3.set_title('Bar Plot', fontsize=14)
ax3.set_facecolor('lightgreen')
ax3.set_xlabel('X-axis', fontsize=12)
ax3.set_ylabel('Y-axis', fontsize=12)
ax3.legend()# 第三行,三个子图,一个直方图,一个饼图,一个箱线图
ax4 = fig.add_subplot(3, 3, 7)
ax4.hist(y, bins=20, color='purple', label='Histogram', alpha=0.7)
ax4.set_title('Histogram', fontsize=14)
ax4.set_facecolor('lightpink')
ax4.set_xlabel('X-axis', fontsize=12)
ax4.set_ylabel('Frequency', fontsize=12)
ax4.legend()ax5 = fig.add_subplot(3, 3, 8)
ax5.pie([len(y[y > 0]), len(y[y < 0])], labels=['Positive', 'Negative'], colors=['orange', 'lightblue'], autopct='%1.1f%%')
ax5.set_title('Pie Chart', fontsize=14)
ax5.set_facecolor('lightcoral')
ax5.legend()ax6 = fig.add_subplot(3, 3, 9)
ax6.boxplot(y, vert=False, widths=0.3, patch_artist=True, boxprops=dict(facecolor='lightgray'))
ax6.set_title('Box Plot', fontsize=14)
ax6.set_facecolor('lightblue')
ax6.set_xlabel('X-axis', fontsize=12)
ax6.legend([])  # 添加空的图例以解决警告# 调整子图布局
plt.tight_layout()# 显示图形
plt.show()

运行:

上面的示例代码演示了如何创建一个包含不同类型子图的图形,并对每个子图进行了定制化设置。代码流程:

  1. 创建示例数据:使用numpy生成示例数据,这里生成了一个sin函数的数据。

  2. 创建图形对象:使用plt.figure()创建一个图形对象,可以设置图形的大小。

  3. 添加母图标题:使用fig.suptitle()可以为整个图形添加一个标题。

  4. 调整子图的布局:使用plt.subplots_adjust()可以调整子图之间的间距,这里增加了垂直间距。

  5. 创建子图:使用fig.add_subplot()创建子图,指定子图的位置和数量

  6. 绘制不同类型的子图:根据需要,创建不同类型的子图,如线图、散点图、柱状图、直方图、饼图、箱线图等。

  7. 设置子图的标题、背景色、坐标轴标签和图例:使用set_title()set_facecolor()set_xlabel()set_ylabel()legend()方法来设置子图的各种属性。

  8. 添加注释:使用annotate()方法可以在子图上添加注释。

  9. 调整子图布局:使用plt.tight_layout()可以自动调整子图的布局,使其适应图形大小。

  10. 显示图形:使用plt.show()显示最终的图形。

这个示例演示了如何在一个图形中创建多个子图,并对每个子图进行不同的设置和绘制不同类型的图表。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134309.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

趣谈网络协议_1

趣谈网络协议_1 第1讲 | 为什么要学习网络协议&#xff1f;第4讲 | DHCP与PXE&#xff1a;IP是怎么来的&#xff0c;又是怎么没的&#xff1f;动态主机配置协议&#xff08;DHCP&#xff09; 第5讲 | 从物理层到MAC层&#xff1a;如何在宿舍里自己组网玩联机游戏&#xff1f;第…

C# 随机数生成 Mersenne Twister 马特赛特旋转演算法 梅森旋转算法

NuGet安装MathNet.Numerics 引用: using MathNet.Numerics.Random; /// <summary>/// 包括lower&#xff0c;不包括upper/// </summary>/// <param name"lower"></param>/// <param name"upper"></param>/// <para…

【深度学习】 Python 和 NumPy 系列教程(十一):NumPy详解:3、数组数学(元素、数组、矩阵级别的各种运算)

目录 一、前言 二、实验环境 三、NumPy 0、多维数组对象&#xff08;ndarray&#xff09; 多维数组的属性 1、创建数组 2、数组操作 3、数组数学 1. 元素级别 a. 直接运算 b. 加法&#xff1a;np.add()函数 c. 减法&#xff1a;np.subtract()函数 d. 乘法&#xf…

HarmonyOS/OpenHarmony应用开发-DevEco Studio新建项目的整体说明

一、文件-新建-新建项目 二、传统应用形态与IDE自带的模板可供选用与免安装的元服与IDE中自带模板的选择 三、以元服务&#xff0c;远程模拟器为例说明IDE整体结构 1区是工程目录结构&#xff0c;是最基本的配置与开发路径等的认知。 2区是代码开发与修改区&#xff0c;是开发…

Ubuntu下高效Vim的搭建(离线版)

软件界面 可以看到界面下方有一些常用提示信息&#xff1a;文件路径、format、文件类型、光标所在的坐标(x,y)、进度条(百分比)、日期时间 会提示已定义的变量名词(快速补全) 搭建方法 下载资源文件 把Vim 和 .vimrc 拷贝到家目录下&#xff0c;并执行tar -xvf Vim 即可。 …

【深度学习】Pytorch 系列教程(十四):PyTorch数据结构:6、模块(Module):前向传播

目录 一、前言 二、实验环境 三、PyTorch数据结构 0、分类 1、张量&#xff08;Tensor&#xff09; 2、张量操作&#xff08;Tensor Operations&#xff09; 3、变量&#xff08;Variable&#xff09; 4、数据集&#xff08;Dataset&#xff09; 5、数据加载器&#x…

CDH集群部署

文章目录 1. 资源准备2. 部署 Mariadb 数据库3. 安装CM服务4. 安装数据节点5. 登录CM系统 1. 资源准备 准备好CDH安装包资源&#xff0c;官方网站下载需要账号&#xff0c;如果没有账号可以去网上到处搜搜。主要涉及到的资源有&#xff1a; cloudera-manager-servercloudera-m…

虹科分享 | 软件供应链攻击如何工作?如何评估软件供应链安全?

说到应用程序和软件&#xff0c;关键词是“更多”。在数字经济需求的推动下&#xff0c;从简化业务运营到创造创新的新收入机会&#xff0c;企业越来越依赖应用程序。云本地应用程序开发更是火上浇油。然而&#xff0c;情况是双向的&#xff1a;这些应用程序通常更复杂&#xf…

SPF9139全力适配ios16与鸿蒙3.0,超实用数据提取、分析、恢复能力UP!

​ 如今&#xff0c;群聊已成为人们必不可少的沟通窗口 家人群&#xff0c;好友群&#xff0c;班级群 粉丝群&#xff0c;交友群&#xff0c;工作群 …… 各类群聊铺天盖地般涌来的同时 也有一些群聊沦为了 赌博、传播淫秽视频、发表不当言论 等违法犯罪行为滋生之地 与…

开源日报 0825 | 简化开发过程,提升Swift应用性能的扩展工具库

OpenZeppelin/openzeppelin-contracts Stars: 22.8k License: MIT OpenZeppelin Contracts 是一个用于安全智能合约开发的库。它建立在社区验证过的代码基础上&#xff0c;具有以下主要功能&#xff1a; 实现了 ERC20 和 ERC721 等标准。灵活的基于角色的权限控制方案。可重…

Jenkins :添加node权限获取凭据、执行命令

拥有Jenkins agent权限的账号可以对node节点进行操作&#xff0c;通过添加不同的node可以让流水线项目在不同的节点上运行&#xff0c;安装Jenkins的主机默认作为master节点。 1.Jenkins 添加node获取明文凭据 通过添加node节点&#xff0c;本地监听ssh认证&#xff0c;选则凭…

iOS系统暗黑模式

系统暗黑模式&#xff1a; 暗黑模式颜色适配&#xff1a; 方式1&#xff1a; Assets配置&#xff1a;在Assets中配置好颜色后&#xff0c;可以通过colorNamed: 放大获取到动态颜色。 方式2&#xff1a;代码配置&#xff0c;通过代码colorWithDynamicProvider: 可以看出来生成…

移动端H5封装一个 ScrollList 横向滚动列表组件,实现向左滑动

效果&#xff1a; 1.封装组件&#xff1a; <template><div class"scroll-list"><divclass"scroll-list-content":style"{ background, color, fontSize: size }"ref"scrollListContent"><div class"scroll…

arcgis实现矢量数据的局部裁剪

目录 环境介绍&#xff1a; 操作任务&#xff1a; 方法一&#xff1a;通过arcgis直接选取要素并保存出来 方法二&#xff1a;通过已知的经纬范围&#xff0c;掩膜获取该范围内的矢量数据 环境介绍&#xff1a; Windows操作系统、arcgis10.8 操作任务&#xff1a; 从整体的…

3ds max文件打包?max插件CG Magic一键打包整起!

3ds max文件如何打包&#xff1f;这个问题&#xff0c;小编听到不少网友的提问&#xff01; 今天CG Magic小编来和大家聊聊&#xff0c;文件更高效的操作&#xff0c;如何打包处理呢&#xff1f; 3DMAX这款软件的受众群体是比较高的&#xff0c;在工作方便的同时&#xff0c;…

uniapp h5 echarts 打包后图表点击失效/及其他失效

文章目录 期望效果实际效果环境引入echarts方式解决方法&#xff1a;注意 原因多说一句在h5打包的时候将 history 改为 hash 不然在浏览器打开后刷新会404 期望效果 实际效果 环境 pc端 window11 hbuilderx版本 3.8.12 echarts版本 5.4.3 引入echarts方式 npm install echar…

二,手机硬件参数介绍和校验算法

系列文章目录 第一章 安卓aosp源码编译环境搭建 第二章 手机硬件参数介绍和校验算法 第三章 修改安卓aosp代码更改硬件参数 第四章 编译定制rom并刷机实现硬改(一) 第五章 编译定制rom并刷机实现硬改(二) 第六章 不root不magisk不xposed lsposed frida原生修改定位 第七章 安卓…

Css实现右上角飘带效果

效果图&#xff1a; 源码&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style type"text/css">*{margin: 0 auto;padding: 0;}.wrap {/* 设置宽高 */width: 350px;height: …

Vue 安装与创建第一Docker的项目

1. 下载nodejs 并且安装 https://nodejs.org/en 2. 打开命令窗口&#xff0c;验证是否安装成功 C:\Users\Harry>node -v v18.16.0C:\Users\Harry>npm -v 9.5.1 3. 安装Vue CLI C:\Users\Harry>npm install -g vue/cli 经过不算漫长的等待&#xff0c;你的Vue CLI就装…

CSS——grid网格布局的基本使用

网格布局在实现页面自适应&#xff0c;大屏可视化中常常使用&#xff0c;在这篇博客里&#xff0c;记录一下网格布局的基本使用。 参考文档&#xff1a;网格布局_菜鸟教程 文章目录 1. 体会grid的自适应性2. grid-template-arr配置网格行列3. 网格单位fr与repeat()简写属性值4…