Llama2-Chinese项目:2.2-大语言模型词表扩充

  因为原生LLaMA对中文的支持很弱,一个中文汉子往往被切分成多个token,因此需要对其进行中文词表扩展。思路通常是在中文语料库上训练一个中文tokenizer模型,然后将中文tokenizer与LLaMA原生tokenizer进行合并,最终得到一个扩展后的tokenizer模型。国内Chinese-LLaMA-Alpaca开源项目详细说明了词表扩展[2]。

一.对LLaMA tokenizer扩充自定义的词表
  原版LLaMA模型的词表大小是32K,其主要针对英语进行训练,下面对其扩充20K中文词表,如下所示:

python merge_tokenizers.py \--llama_tokenizer_dir r'L:/20230902_Llama1/llama-7b-hf' \--chinese_sp_model_file r'./chinese_sp.model'
  • llama_tokenizer_dir:指向存放原版LLaMA tokenizer的目录
  • chinese_sp_model_file:指向用sentencepiece训练的中文词表文件

说明:在中文通用语料上训练的20K中文词表下载链接参考[3],如何构建垂直领域的中文词表下次分享。

二.merge_tokenizers.py注释
1.本文环境
本文环境为Windows10,Python3.10,CUDA 11.8,GTX 3090(24G),内存24G。

2.merge_tokenizers.py代码

import os
from transformers import LlamaTokenizer
from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
import sentencepiece as spm
import argparse
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"# parser = argparse.ArgumentParser() # 创建一个ArgumentParser对象
# parser.add_argument('--llama_tokenizer_dir', default=r'L:/20230902_Llama1/llama-7b-hf', type=str, required=True) # 添加参数
# parser.add_argument('--chinese_sp_model_file', default='./chinese_sp.model', type=str) # 添加参数
# args = parser.parse_args() # 解析参数
# llama_tokenizer_dir = args.llama_tokenizer_dir # 这里是LLaMA tokenizer的路径
# chinese_sp_model_file = args.chinese_sp_model_file # 这里是Chinese tokenizer的路径llama_tokenizer_dir = r'L:/20230902_Llama1/llama-7b-hf'  # 这里是LLaMA tokenizer的路径
chinese_sp_model_file = r'./chinese_sp.model'  # 这里是Chinese tokenizer的路径# 加载tokenizer
llama_tokenizer = LlamaTokenizer.from_pretrained(llama_tokenizer_dir)  # 加载LLaMA tokenizer
chinese_sp_model = spm.SentencePieceProcessor()  # 定义Chinese tokenizer
chinese_sp_model.Load(chinese_sp_model_file)  # 加载Chinese tokenizerllama_spm = sp_pb2_model.ModelProto()  # 定义LLaMA tokenizer的sentencepiece model
llama_spm.ParseFromString(llama_tokenizer.sp_model.serialized_model_proto())  # 从LLaMA tokenizer中加载sentencepiece model
chinese_spm = sp_pb2_model.ModelProto()  # 定义Chinese tokenizer的sentencepiece model
chinese_spm.ParseFromString(chinese_sp_model.serialized_model_proto())  # 从Chinese tokenizer中加载sentencepiece model# 输出tokens的信息
print(len(llama_tokenizer), len(chinese_sp_model))  # 两个tokenizer的词表大小;输出为32000、20000
print(llama_tokenizer.all_special_tokens)  # LLaMA tokenizer的special tokens;输出为['']
print(llama_tokenizer.all_special_ids)  # LLaMA tokenizer的special tokens对应的id;输出为[0]
print(llama_tokenizer.special_tokens_map)  # LLaMA tokenizer的special tokens;输出为{'bos_token': '', 'eos_token': '', 'unk_token': ''}# 将Chinese tokenizer的词表添加到LLaMA tokenizer中(合并过程)
llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces)  # LLaMA tokenizer的词表
print(len(llama_spm_tokens_set))  # LLaMA tokenizer的词表大小;输出为32000
print(f"Before:{len(llama_spm_tokens_set)}")  # LLaMA tokenizer的词表大小;输出为Before:32000
for p in chinese_spm.pieces:  # 遍历Chinese tokenizer的词表piece = p.piece  # Chinese tokenizer的词if piece not in llama_spm_tokens_set:  # 如果Chinese tokenizer的词不在LLaMA tokenizer的词表中new_p = sp_pb2_model.ModelProto().SentencePiece()  # 创建一个新的sentencepiecenew_p.piece = piece  # 设置sentencepiece的词new_p.score = 0  # 设置sentencepiece的scorellama_spm.pieces.append(new_p)  # 将sentencepiece添加到LLaMA tokenizer的词表中
print(f"New model pieces: {len(llama_spm.pieces)}")  # LLaMA tokenizer的词表大小;输出为New model pieces: 49953# 保存LLaMA tokenizer
output_sp_dir = 'merged_tokenizer_sp'  # 这里是保存LLaMA tokenizer的路径
output_hf_dir = 'merged_tokenizer_hf'  # 这里是保存Chinese-LLaMA tokenizer的路径
os.makedirs(output_sp_dir, exist_ok=True)  # 创建保存LLaMA tokenizer的文件夹
with open(output_sp_dir + '/chinese_llama.model', 'wb') as f:f.write(llama_spm.SerializeToString())
tokenizer = LlamaTokenizer(vocab_file=output_sp_dir + '/chinese_llama.model')  # 创建LLaMA tokenizer
tokenizer.save_pretrained(output_hf_dir)  # 保存Chinese-LLaMA tokenizer
print(f"Chinese-LLaMA tokenizer has been saved to {output_hf_dir}")  # 保存Chinese-LLaMA tokenizer# 测试tokenizer
llama_tokenizer = LlamaTokenizer.from_pretrained(llama_tokenizer_dir)  # LLaMA tokenizer
chinese_llama_tokenizer = LlamaTokenizer.from_pretrained(output_hf_dir)  # Chinese-LLaMA tokenizer
print(tokenizer.all_special_tokens)  # LLaMA tokenizer的special tokens;输出为['<s>', '</s>', '<unk>']
print(tokenizer.all_special_ids)  # LLaMA tokenizer的special tokens对应的id;输出为[0, 1, 2]
print(tokenizer.special_tokens_map)  # LLaMA tokenizer的special tokens;输出为{'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'}
text = '''白日依山尽,黄河入海流。欲穷千里目,更上一层楼。
The primary use of LLaMA is research on large language models, including'''
print("Test text:\n", text)  # 测试文本
print(f"Tokenized by LLaMA tokenizer:{llama_tokenizer.tokenize(text)}")  # 测试LLaMA tokenizer
# 输出结果
# Tokenized by LLaMA tokenizer:['▁', '白', '日', '<0xE4>', '<0xBE>', '<0x9D>', '山', '<0xE5>', '<0xB0>', '<0xBD>', ',', '黄', '河', '入', '海', '流', '。', '<0xE6>', '<0xAC>', '<0xB2>', '<0xE7>', '<0xA9>', '<0xB7>', '千', '里', '目', ',', '更', '上', '一', '<0xE5>', '<0xB1>', '<0x82>', '<0xE6>', '<0xA5>', '<0xBC>', '。', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']
print(f"Tokenized by Chinese-LLaMA tokenizer:{chinese_llama_tokenizer.tokenize(text)}")  # 测试Chinese-LLaMA tokenizer
# 输出结果
# Tokenized by Chinese-LLaMA tokenizer:['▁白', '日', '依', '山', '尽', ',', '黄河', '入', '海', '流', '。', '欲', '穷', '千里', '目', ',', '更', '上', '一层', '楼', '。', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']

3.生成的目录


参考文献:
[1]是否有基于Llama-2的增量训练模型:https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/817
[2]https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/scripts/merge_tokenizer/merge_tokenizers.py
[3]https://github.com/ymcui/Chinese-LLaMA-Alpaca/tree/main/scripts/merge_tokenizer/chinese_sp.model
[4]下载Chinese-LLaMA-Alpaca:git clone https://github.com/ymcui/Chinese-LLaMA-Alpaca.git
[5]下载llama-7b-hf:git lfs clone https://huggingface.co/yahma/llama-7b-hf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134330.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker网络学习

文章目录 Docker容器网络1.Docker为什么需要网络管理2. Docker网络简介3. 常见的网络类型4. docker 网络管理命令5.两种网络加入差异6.网络讲解docker Bridge 网络docker Host 网络docker Container 网络docker none 网络 Docker容器网络 1.Docker为什么需要网络管理 容器的网…

自动生成bug异常追踪-SRE与开发自动化协同

作者&#xff1a;观测云 数据智能部 产品方案架构师 范莹莹 简介 生产环境 bug 的定义&#xff1a;RUM 应用和 APM 应用的 error_stack 信息被捕捉后成为 bug。 以 APM 新增错误巡检为例&#xff0c;当出现新错误时&#xff0c;在观测云控制台的「事件」模块下生成新的事件报…

基于matlab实现的电力系统稳定性分析摆幅曲线代码

完整程序&#xff1a; clear; clc; t 0; tf 0; tfl 0.5; tc 0.5; % tc 0.05, 0.125, 0.5 sec for 2.5 cycles, 6.25 cycles & 25 cycles resp ts 0.05; m 2.52 / (180 * 50); i 2; dt 21.64 * pi / 180; ddt 0; time(1) 0; ang(1) 21.64; pm 0.9; pm1 2.44;…

java 字符串只保留数字、字母、中文

public static void main(String[] args) {String str "测 试 WG23-D";// 只留字母String s1 str.replaceAll("[^a-zA-Z]", "");// 只留数字String s2 str.replaceAll("[^0-9]", "");// 只留中文String s3 str.replaceA…

骨传导耳机有害处吗、骨传导耳机真的不好用吗?

骨传导耳机没有害处。 骨传导耳机是通过将声音传递到颅骨&#xff0c;再由颅骨传递到内耳&#xff0c;从而达到听声音的效果&#xff0c;与传统的耳机不同。 因此&#xff0c;骨传导耳机不会直接对人的身体健康、耳朵产生压力和损伤&#xff0c;也不会影响耳道和中耳的正常功能…

Jmeter性能实战之分布式压测

分布式执行原理 1、JMeter分布式测试时&#xff0c;选择其中一台作为调度机(master)&#xff0c;其它机器作为执行机(slave)。 2、执行时&#xff0c;master会把脚本发送到每台slave上&#xff0c;slave 拿到脚本后就开始执行&#xff0c;slave执行时不需要启动GUI&#xff0…

题目 1057: 二级C语言-分段函数

有一个函数如下&#xff0c;写一程序&#xff0c;输入x&#xff0c;输出y值。 保留两位小数 样例输入 1 样例输出 1.00 这道题的思路很简单&#xff0c;我直接用if判断输入的X对应的函数Y的区间&#xff0c;代入对应的函数&#xff0c;求出结果。记得变量用浮点型&#xff…

【毕设选题】opencv 图像识别 指纹识别 - python

文章目录 0 前言1 课题背景2 效果展示3 具体实现3.1 图像对比过滤3.2 图像二值化3.3 图像侵蚀细化3.4 图像增强3.5 特征点检测 4 OpenCV5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往…

计算机竞赛 机器视觉的试卷批改系统 - opencv python 视觉识别

文章目录 0 简介1 项目背景2 项目目的3 系统设计3.1 目标对象3.2 系统架构3.3 软件设计方案 4 图像预处理4.1 灰度二值化4.2 形态学处理4.3 算式提取4.4 倾斜校正4.5 字符分割 5 字符识别5.1 支持向量机原理5.2 基于SVM的字符识别5.3 SVM算法实现 6 算法测试7 系统实现8 最后 0…

基于springboot+vue的问卷调查系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

Day42:网易云项目,路由进阶

网易云项目 创建、启动项目并配置路由 npm init vite npm i npm i vue-router npm i sass -D 在main.js中 import router from ./router createApp(App).use(router).mount(#app) 在index中配置路由 import {createRouter,createWebHistory} from vue-router import H…

【第200篇原创文章】解决低于1%概率出现的芯片VPSS模块跑飞的问题

在发布SDK内测的时候&#xff0c;我们发现在切换视频分辨率的时候有低概率出现VPSS模块跑飞的情况&#xff0c;概率低于1%&#xff0c;试个两三百次&#xff0c;能出1~2次。切换视频分辨率这个功能在安防产品上也确实存在需求&#xff0c;网络带宽不大好的地方分辨率可以适当下…

【LeetCode-面试经典150题-day24】

目录 35.搜索插入位置 74.搜索二维矩阵 162.寻找峰值 33.搜索旋转排序数组 35.搜索插入位置 题意&#xff1a; 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请…

Verdi实现信号的平移

在Verilog/System verilog中&#xff0c;# xxx可以实现延迟指定时间的功能&#xff0c;而在使用verdi查看信号波形并进行分析时&#xff0c;同样也可以实现类似的功能。 (注&#xff1a;这种信号平移是有其应用场景的&#xff0c;例如&#xff0c;在某些仿真模型中&#xff0c;…

【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码

目录 1 基本子图绘制示例 2 子图网格布局 3 调整子图的尺寸 4 多行多列的子图布局 5 子图之间的共享轴 6 绘制多个子图类型 7 实战&#xff1a; 绘制一个大图&#xff0c;里面包含6个不同类别的子图&#xff0c;不均匀布局。 绘制子图&#xff08;subplots&#xff09;…

趣谈网络协议_1

趣谈网络协议_1 第1讲 | 为什么要学习网络协议&#xff1f;第4讲 | DHCP与PXE&#xff1a;IP是怎么来的&#xff0c;又是怎么没的&#xff1f;动态主机配置协议&#xff08;DHCP&#xff09; 第5讲 | 从物理层到MAC层&#xff1a;如何在宿舍里自己组网玩联机游戏&#xff1f;第…

C# 随机数生成 Mersenne Twister 马特赛特旋转演算法 梅森旋转算法

NuGet安装MathNet.Numerics 引用: using MathNet.Numerics.Random; /// <summary>/// 包括lower&#xff0c;不包括upper/// </summary>/// <param name"lower"></param>/// <param name"upper"></param>/// <para…

【深度学习】 Python 和 NumPy 系列教程(十一):NumPy详解:3、数组数学(元素、数组、矩阵级别的各种运算)

目录 一、前言 二、实验环境 三、NumPy 0、多维数组对象&#xff08;ndarray&#xff09; 多维数组的属性 1、创建数组 2、数组操作 3、数组数学 1. 元素级别 a. 直接运算 b. 加法&#xff1a;np.add()函数 c. 减法&#xff1a;np.subtract()函数 d. 乘法&#xf…

HarmonyOS/OpenHarmony应用开发-DevEco Studio新建项目的整体说明

一、文件-新建-新建项目 二、传统应用形态与IDE自带的模板可供选用与免安装的元服与IDE中自带模板的选择 三、以元服务&#xff0c;远程模拟器为例说明IDE整体结构 1区是工程目录结构&#xff0c;是最基本的配置与开发路径等的认知。 2区是代码开发与修改区&#xff0c;是开发…

Ubuntu下高效Vim的搭建(离线版)

软件界面 可以看到界面下方有一些常用提示信息&#xff1a;文件路径、format、文件类型、光标所在的坐标(x,y)、进度条(百分比)、日期时间 会提示已定义的变量名词(快速补全) 搭建方法 下载资源文件 把Vim 和 .vimrc 拷贝到家目录下&#xff0c;并执行tar -xvf Vim 即可。 …