【毕设选题】opencv 图像识别 指纹识别 - python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 效果展示
  • 3 具体实现
    • 3.1 图像对比过滤
    • 3.2 图像二值化
    • 3.3 图像侵蚀细化
    • 3.4 图像增强
    • 3.5 特征点检测
  • 4 OpenCV
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于机器视觉的指纹识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

1 课题背景

指纹是指人类手指上的条状纹路, 它们的形成依赖于胚胎发育时的环境。“没有2个完全相同的指纹”这一观点已经得到公认。指纹识别已经有了很长一段历史。

据考古学家证实:公元前6 000年以前, 指纹作为身份鉴别的工具已经在古叙利亚和中国开始应用。到了20世纪80年代,、光学扫描这2项技术的革新, 使得它们作为指纹取像的工具成为现实, 从而使指纹识别可以在其他领域中得以应用。

现在, 随着取像设备的引入及其飞速发展, 生物指纹识别技术的逐渐成熟, 可靠的比对算法的发现都为指纹识别技术提供了更广阔的舞台。

本项目实现了一种指纹识别系统,通过过滤过程来确定用户指纹是否与注册的指纹匹配。通过过滤技术对捕获的指纹进行处理,以从捕获的图像中去除噪声。去除噪声后的最终结果与注册的指纹进行特征匹配,以确定它们是否相同。

2 效果展示

在这里插入图片描述
在这里插入图片描述
3

3 具体实现

3.1 图像对比过滤

图像融合是一种图像增强方法,这里先融合两个图像便于特征点对比。利用的是opencv封装的函数

cv2.addWeighted()

相关代码

def apply_Contrast(img):alpha = 0.5 # assigned weight to the first imagebeta = 0.5 # assigned weight to the second imageimg_second = np.zeros(img.shape, img.dtype) # second image, copy of first onecontrast = cv2.addWeighted(img, alpha, img_second, 0, beta) # applying contrastreturn contrast

3.2 图像二值化

简介

图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。
在这里插入图片描述
二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。
在计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。在这个矩阵里,每一个像素就是矩阵中的一个元素。在三通道的彩色图像中,这个元素是由三个数字组成的元组。而对于单通道的灰度图像来说,这个元素就是一个数字。这个数字代表了图像在这个点的亮度,数字越大像素点也就越亮,在常见的八位单通道色彩空间中,0代表全黑,255代表全白。

相关代码

def apply_Binarization(img):# if pixel value is greater then the threshold value it is assigned a singular color of either black or white_, mask = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY_INV)return mask

3.3 图像侵蚀细化

图像侵蚀(腐蚀)

腐蚀(Erosion)- shrink image regions,侵蚀是数学形态学领域的两个基本算子之一,另一个是膨胀。 它通常应用于二值图像,但是有些版本可用于灰度图像。 算子对二值图像的基本作用是侵蚀前景像素(通常为白色像素)区域的边界。 因此,前景像素的区域尺寸缩小,并且这些区域内的孔洞变大。
在这里插入图片描述
图像细化

细化(Thinning)- structured erosion using image pattern matching,细化是一种形态学操作,用于从二值图像中删除选定的前景像素,有点像侵蚀或开口。 它可以用于多种应用程序,但是对于骨架化特别有用。 在这种模式下,通常通过将所有行减少到单个像素厚度来整理边缘检测器的输出。 细化通常仅应用于二值图像,并产生另一个二值图像作为输出。

在这里插入图片描述
相关代码

def apply_Erosion(img):kernal = np.ones((3,3), np.uint8) # shape applied to image, 3x3 square shape is applied to contrast imageerosion = cv2.erode(img, kernal, iterations=1) # erosion mask applied to the contrast image to thin fingerprint ridgesreturn erosion

3.4 图像增强

图像增强的主要目的是提高图像的质量和可辨识度,使图像更有利于观察或进一步分析处理。图像增强技术一般通过对图像的某些特征,例如边缘信息、轮廓信息和对比度等进行突出或增强,从而更好的显示图像的有用信息,提高图像的使用价值。图像增强技术是在一定标准下,处理后的图像比原图像效果更好。

相关代码

def apply_highlighting(img):feature_points = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)Image_blue = np.array(feature_points, copy=True)white_px = np.asarray([255, 255, 255])blue_px = np.asarray([0  , 255  , 255  ])(row, col, _) = feature_points.shapefor r in range(row):for c in range(col):px = feature_points[r][c]if all(px == white_px):Image_blue[r][c] = blue_pxreturn Image_blue

3.5 特征点检测

指纹特征提取的主要目的是计算指纹核心点(Core)和细节点(Minutia)的特征信息。在提取指纹核心点时,采用的是Poincare Index算法,该算法的思路是在指纹图像某像素点区域内,按围绕该点的闭合曲线逆时针方向旋转一周,计算方向角度旋转变化量的和,最后以计算结果来寻找核心点。计算过程中如果某像素点的Poincare Index值为π则判定为核心点,然后便提取该点的坐标与方向场信息,记为P(Cx, Cy, θc)。

相关代码

def show_featurepoints(img):#show feature points found in fingerprint using orb detectororb  = cv2.ORB_create(nfeatures=1200)keypoints, descriptors = orb.detectAndCompute(img, None)featurepoint_img = imgfeaturepoint_img = cv2.drawKeypoints(featurepoint_img, keypoints, None, color=(255, 0 ,0))return featurepoint_img

4 OpenCV

简介
Opencv(Open Source Computer Vision Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。在这里我们要区分两个概念:图像处理和计算机视觉的区别:图像处理侧重于“处理”图像–如增强,还原,去噪,分割等等;而计算机视觉重点在于使用计算机来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标。
OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS, 如今也提供对于C#、Ch、Ruby,GO的支持。

基础功能速查表
在这里插入图片描述

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134319.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机竞赛 机器视觉的试卷批改系统 - opencv python 视觉识别

文章目录 0 简介1 项目背景2 项目目的3 系统设计3.1 目标对象3.2 系统架构3.3 软件设计方案 4 图像预处理4.1 灰度二值化4.2 形态学处理4.3 算式提取4.4 倾斜校正4.5 字符分割 5 字符识别5.1 支持向量机原理5.2 基于SVM的字符识别5.3 SVM算法实现 6 算法测试7 系统实现8 最后 0…

基于springboot+vue的问卷调查系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

Day42:网易云项目,路由进阶

网易云项目 创建、启动项目并配置路由 npm init vite npm i npm i vue-router npm i sass -D 在main.js中 import router from ./router createApp(App).use(router).mount(#app) 在index中配置路由 import {createRouter,createWebHistory} from vue-router import H…

【第200篇原创文章】解决低于1%概率出现的芯片VPSS模块跑飞的问题

在发布SDK内测的时候,我们发现在切换视频分辨率的时候有低概率出现VPSS模块跑飞的情况,概率低于1%,试个两三百次,能出1~2次。切换视频分辨率这个功能在安防产品上也确实存在需求,网络带宽不大好的地方分辨率可以适当下…

【LeetCode-面试经典150题-day24】

目录 35.搜索插入位置 74.搜索二维矩阵 162.寻找峰值 33.搜索旋转排序数组 35.搜索插入位置 题意: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请…

Verdi实现信号的平移

在Verilog/System verilog中,# xxx可以实现延迟指定时间的功能,而在使用verdi查看信号波形并进行分析时,同样也可以实现类似的功能。 (注:这种信号平移是有其应用场景的,例如,在某些仿真模型中,…

【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码

目录 1 基本子图绘制示例 2 子图网格布局 3 调整子图的尺寸 4 多行多列的子图布局 5 子图之间的共享轴 6 绘制多个子图类型 7 实战: 绘制一个大图,里面包含6个不同类别的子图,不均匀布局。 绘制子图(subplots)…

趣谈网络协议_1

趣谈网络协议_1 第1讲 | 为什么要学习网络协议?第4讲 | DHCP与PXE:IP是怎么来的,又是怎么没的?动态主机配置协议(DHCP) 第5讲 | 从物理层到MAC层:如何在宿舍里自己组网玩联机游戏?第…

C# 随机数生成 Mersenne Twister 马特赛特旋转演算法 梅森旋转算法

NuGet安装MathNet.Numerics 引用: using MathNet.Numerics.Random; /// <summary>/// 包括lower&#xff0c;不包括upper/// </summary>/// <param name"lower"></param>/// <param name"upper"></param>/// <para…

【深度学习】 Python 和 NumPy 系列教程(十一):NumPy详解:3、数组数学(元素、数组、矩阵级别的各种运算)

目录 一、前言 二、实验环境 三、NumPy 0、多维数组对象&#xff08;ndarray&#xff09; 多维数组的属性 1、创建数组 2、数组操作 3、数组数学 1. 元素级别 a. 直接运算 b. 加法&#xff1a;np.add()函数 c. 减法&#xff1a;np.subtract()函数 d. 乘法&#xf…

HarmonyOS/OpenHarmony应用开发-DevEco Studio新建项目的整体说明

一、文件-新建-新建项目 二、传统应用形态与IDE自带的模板可供选用与免安装的元服与IDE中自带模板的选择 三、以元服务&#xff0c;远程模拟器为例说明IDE整体结构 1区是工程目录结构&#xff0c;是最基本的配置与开发路径等的认知。 2区是代码开发与修改区&#xff0c;是开发…

Ubuntu下高效Vim的搭建(离线版)

软件界面 可以看到界面下方有一些常用提示信息&#xff1a;文件路径、format、文件类型、光标所在的坐标(x,y)、进度条(百分比)、日期时间 会提示已定义的变量名词(快速补全) 搭建方法 下载资源文件 把Vim 和 .vimrc 拷贝到家目录下&#xff0c;并执行tar -xvf Vim 即可。 …

【深度学习】Pytorch 系列教程(十四):PyTorch数据结构:6、模块(Module):前向传播

目录 一、前言 二、实验环境 三、PyTorch数据结构 0、分类 1、张量&#xff08;Tensor&#xff09; 2、张量操作&#xff08;Tensor Operations&#xff09; 3、变量&#xff08;Variable&#xff09; 4、数据集&#xff08;Dataset&#xff09; 5、数据加载器&#x…

CDH集群部署

文章目录 1. 资源准备2. 部署 Mariadb 数据库3. 安装CM服务4. 安装数据节点5. 登录CM系统 1. 资源准备 准备好CDH安装包资源&#xff0c;官方网站下载需要账号&#xff0c;如果没有账号可以去网上到处搜搜。主要涉及到的资源有&#xff1a; cloudera-manager-servercloudera-m…

虹科分享 | 软件供应链攻击如何工作?如何评估软件供应链安全?

说到应用程序和软件&#xff0c;关键词是“更多”。在数字经济需求的推动下&#xff0c;从简化业务运营到创造创新的新收入机会&#xff0c;企业越来越依赖应用程序。云本地应用程序开发更是火上浇油。然而&#xff0c;情况是双向的&#xff1a;这些应用程序通常更复杂&#xf…

SPF9139全力适配ios16与鸿蒙3.0,超实用数据提取、分析、恢复能力UP!

​ 如今&#xff0c;群聊已成为人们必不可少的沟通窗口 家人群&#xff0c;好友群&#xff0c;班级群 粉丝群&#xff0c;交友群&#xff0c;工作群 …… 各类群聊铺天盖地般涌来的同时 也有一些群聊沦为了 赌博、传播淫秽视频、发表不当言论 等违法犯罪行为滋生之地 与…

开源日报 0825 | 简化开发过程,提升Swift应用性能的扩展工具库

OpenZeppelin/openzeppelin-contracts Stars: 22.8k License: MIT OpenZeppelin Contracts 是一个用于安全智能合约开发的库。它建立在社区验证过的代码基础上&#xff0c;具有以下主要功能&#xff1a; 实现了 ERC20 和 ERC721 等标准。灵活的基于角色的权限控制方案。可重…

Jenkins :添加node权限获取凭据、执行命令

拥有Jenkins agent权限的账号可以对node节点进行操作&#xff0c;通过添加不同的node可以让流水线项目在不同的节点上运行&#xff0c;安装Jenkins的主机默认作为master节点。 1.Jenkins 添加node获取明文凭据 通过添加node节点&#xff0c;本地监听ssh认证&#xff0c;选则凭…

iOS系统暗黑模式

系统暗黑模式&#xff1a; 暗黑模式颜色适配&#xff1a; 方式1&#xff1a; Assets配置&#xff1a;在Assets中配置好颜色后&#xff0c;可以通过colorNamed: 放大获取到动态颜色。 方式2&#xff1a;代码配置&#xff0c;通过代码colorWithDynamicProvider: 可以看出来生成…

移动端H5封装一个 ScrollList 横向滚动列表组件,实现向左滑动

效果&#xff1a; 1.封装组件&#xff1a; <template><div class"scroll-list"><divclass"scroll-list-content":style"{ background, color, fontSize: size }"ref"scrollListContent"><div class"scroll…