机器学习练习-决策树

机器学习练习-决策树

代码更新地址:https://github.com/fengdu78/WZU-machine-learning-course

代码修改并注释:黄海广,haiguang2000@wzu.edu.cn

1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if-then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布。

2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。

决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。常用的算法有ID3、
C4.5和CART。

3.特征选择的目的在于选取对训练数据能够分类的特征。特征选择的关键是其准则。常用的准则如下:

(1)样本集合 D D D对特征 A A A的信息增益(ID3)

g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D|A) g(D,A)=H(D)H(DA)

H ( D ) = − ∑ k = 1 K ∣ C k ∣ ∣ D ∣ log ⁡ 2 ∣ C k ∣ ∣ D ∣ H(D)=-\sum_{k=1}^{K} \frac{\left|C_{k}\right|}{|D|} \log _{2} \frac{\left|C_{k}\right|}{|D|} H(D)=k=1KDCklog2DCk

H ( D ∣ A ) = ∑ i = 1 n ∣ D i ∣ ∣ D ∣ H ( D i ) H(D | A)=\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} H\left(D_{i}\right) H(DA)=i=1nDDiH(Di)

其中, H ( D ) H(D) H(D)是数据集 D D D的熵, H ( D i ) H(D_i) H(Di)是数据集 D i D_i Di的熵, H ( D ∣ A ) H(D|A) H(DA)是数据集 D D D对特征 A A A的条件熵。 D i D_i Di D D D中特征 A A A取第 i i i个值的样本子集, C k C_k Ck D D D中属于第 k k k类的样本子集。 n n n是特征 A A A取 值的个数, K K K是类的个数。

(2)样本集合 D D D对特征 A A A的信息增益比(C4.5)

g R ( D , A ) = g ( D , A ) H ( D ) g_{R}(D, A)=\frac{g(D, A)}{H(D)} gR(D,A)=H(D)g(D,A)

其中, g ( D , A ) g(D,A) g(D,A)是信息增益, H ( D ) H(D) H(D)是数据集 D D D的熵。

(3)样本集合 D D D的基尼指数(CART)

Gini ⁡ ( D ) = 1 − ∑ k = 1 K ( ∣ C k ∣ ∣ D ∣ ) 2 \operatorname{Gini}(D)=1-\sum_{k=1}^{K}\left(\frac{\left|C_{k}\right|}{|D|}\right)^{2} Gini(D)=1k=1K(DCk)2

特征 A A A条件下集合 D D D的基尼指数:

Gini ⁡ ( D , A ) = ∣ D 1 ∣ ∣ D ∣ Gini ⁡ ( D 1 ) + ∣ D 2 ∣ ∣ D ∣ Gini ⁡ ( D 2 ) \operatorname{Gini}(D, A)=\frac{\left|D_{1}\right|}{|D|} \operatorname{Gini}\left(D_{1}\right)+\frac{\left|D_{2}\right|}{|D|} \operatorname{Gini}\left(D_{2}\right) Gini(D,A)=DD1Gini(D1)+DD2Gini(D2)

4.决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。决策树的生成往往通过计算信息增益或其他指标,从根结点开始,递归地产生决策树。这相当于用信息增益或其他准则不断地选取局部最优的特征,或将训练集分割为能够基本正确分类的子集。

5.决策树的剪枝。由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从已生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。

导入包:

import numpy as np
import pandas as pd
import math
from math import log

创建数据

def create_data():datasets = [['青年', '否', '否', '一般', '否'],['青年', '否', '否', '好', '否'],['青年', '是', '否', '好', '是'],['青年', '是', '是', '一般', '是'],['青年', '否', '否', '一般', '否'],['中年', '否', '否', '一般', '否'],['中年', '否', '否', '好', '否'],['中年', '是', '是', '好', '是'],['中年', '否', '是', '非常好', '是'],['中年', '否', '是', '非常好', '是'],['老年', '否', '是', '非常好', '是'],['老年', '否', '是', '好', '是'],['老年', '是', '否', '好', '是'],['老年', '是', '否', '非常好', '是'],['老年', '否', '否', '一般', '否'],]labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']# 返回数据集和每个维度的名称return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data

在这里插入图片描述

# 计算给定数据集的熵(信息熵)
def calc_ent(datasets):# 计算数据集的长度data_length = len(datasets)# 统计数据集中每个类别的出现次数label_count = {}for i in range(data_length):# 获取每个样本的标签label = datasets[i][-1]# 如果该类别不在label_count中,则添加到label_count中if label not in label_count:label_count[label] = 0# 统计该类别的出现次数label_count[label] += 1# 计算熵ent = -sum([(p / data_length) * log(p / data_length, 2)for p in label_count.values()])return ent

条件熵

# 计算给定数据集在指定特征上的条件熵
def cond_ent(datasets, axis=0):# 计算数据集的长度data_length = len(datasets)# 使用字典feature_sets存储在指定特征上的不同取值对应的样本集合feature_sets = {}for i in range(data_length):# 获取每个样本在指定特征上的取值feature = datasets[i][axis]# 如果该取值不在feature_sets中,则添加到feature_sets中if feature not in feature_sets:feature_sets[feature] = []# 将该样本添加到对应取值的样本集合中feature_sets[feature].append(datasets[i])# 计算条件熵cond_ent = sum([(len(p) / data_length) * calc_ent(p)for p in feature_sets.values()])return cond_ent
calc_ent(datasets)

0.9709505944546686

信息增益

#计算信息增益
def info_gain(ent, cond_ent):# 信息增益等于熵减去条件熵return ent - cond_ent
#使用信息增益选择最佳特征作为根节点特征进行决策树的训练
def info_gain_train(datasets):# 计算特征的数量count = len(datasets[0]) - 1# 计算整个数据集的熵ent = calc_ent(datasets)# 存储每个特征的信息增益best_feature = []for c in range(count):# 计算每个特征的条件熵c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))# 将特征及其对应的信息增益存入best_feature列表中best_feature.append((c, c_info_gain))# 输出每个特征的信息增益print('特征({}) 的信息增益为: {:.3f}'.format(labels[c], c_info_gain))# 找到信息增益最大的特征best_ = max(best_feature, key=lambda x: x[-1])# 返回信息增益最大的特征作为根节点特征return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))

在这里插入图片描述

利用ID3算法生成决策树

# 定义节点类 二叉树
class Node:def __init__(self, root=True, label=None, feature_name=None, feature=None):self.root = rootself.label = labelself.feature_name = feature_nameself.feature = featureself.tree = {}self.result = {'label:': self.label,'feature': self.feature,'tree': self.tree}def __repr__(self):return '{}'.format(self.result)def add_node(self, val, node):self.tree[val] = nodedef predict(self, features):if self.root is True:return self.labelreturn self.tree[features[self.feature]].predict(features)class DTree:def __init__(self, epsilon=0.1):self.epsilon = epsilonself._tree = {}# 熵@staticmethoddef calc_ent(datasets):data_length = len(datasets)label_count = {}for i in range(data_length):label = datasets[i][-1]if label not in label_count:label_count[label] = 0label_count[label] += 1ent = -sum([(p / data_length) * log(p / data_length, 2)for p in label_count.values()])return ent# 经验条件熵def cond_ent(self, datasets, axis=0):data_length = len(datasets)feature_sets = {}for i in range(data_length):feature = datasets[i][axis]if feature not in feature_sets:feature_sets[feature] = []feature_sets[feature].append(datasets[i])cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)for p in feature_sets.values()])return cond_ent# 信息增益@staticmethoddef info_gain(ent, cond_ent):return ent - cond_entdef info_gain_train(self, datasets):count = len(datasets[0]) - 1ent = self.calc_ent(datasets)best_feature = []for c in range(count):c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))best_feature.append((c, c_info_gain))# 比较大小best_ = max(best_feature, key=lambda x: x[-1])return best_def train(self, train_data):"""input:数据集D(DataFrame格式),特征集A,阈值etaoutput:决策树T"""_, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:,-1], train_data.columns[:-1]# 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回Tif len(y_train.value_counts()) == 1:return Node(root=True, label=y_train.iloc[0])# 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回Tif len(features) == 0:return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0])# 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征max_feature, max_info_gain = self.info_gain_train(np.array(train_data))max_feature_name = features[max_feature]# 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回Tif max_info_gain < self.epsilon:return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0])# 5,构建Ag子集node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)feature_list = train_data[max_feature_name].value_counts().indexfor f in feature_list:sub_train_df = train_data.loc[train_data[max_feature_name] ==f].drop([max_feature_name], axis=1)# 6, 递归生成树sub_tree = self.train(sub_train_df)node_tree.add_node(f, sub_tree)# pprint.pprint(node_tree.tree)return node_treedef fit(self, train_data):self._tree = self.train(train_data)return self._treedef predict(self, X_test):return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree

{‘label:’: None, ‘feature’: 2, ‘tree’: {‘否’: {‘label:’: None, ‘feature’: 1, ‘tree’: {‘否’: {‘label:’: ‘否’, ‘feature’: None, ‘tree’: {}}, ‘是’: {‘label:’: ‘是’, ‘feature’: None, ‘tree’: {}}}}, ‘是’: {‘label:’: ‘是’, ‘feature’: None, ‘tree’: {}}}}

dt.predict(['老年', '否', '否', '一般'])

‘否’

Scikit-learn实例

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter

使用Iris数据集,我们可以构建如下树:

#data
def create_data():iris = load_iris()df = pd.DataFrame(iris.data, columns=iris.feature_names)df['label'] = iris.targetdf.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']data = np.array(df.iloc[:100, [0, 1, -1]])# print(data)return data[:, :2], data[:, -1],iris.feature_names[0:2]X, y,feature_name= create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

决策树分类

from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
from sklearn import treeclf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)clf.score(X_test, y_test)

0.9

一旦经过训练,就可以用 plot_tree函数绘制树:

tree.plot_tree(clf) 

[Text(0.5, 0.9, ‘x[0] <= 5.45\ngini = 0.496\nsamples = 70\nvalue = [38, 32]’),
Text(0.25, 0.7, ‘x[1] <= 2.65\ngini = 0.184\nsamples = 39\nvalue = [35, 4]’),
Text(0.125, 0.5, ‘gini = 0.0\nsamples = 3\nvalue = [0, 3]’),
Text(0.375, 0.5, ‘x[0] <= 5.35\ngini = 0.054\nsamples = 36\nvalue = [35, 1]’),
Text(0.25, 0.3, ‘gini = 0.0\nsamples = 30\nvalue = [30, 0]’),
Text(0.5, 0.3, ‘x[1] <= 3.2\ngini = 0.278\nsamples = 6\nvalue = [5, 1]’),
Text(0.375, 0.1, ‘gini = 0.0\nsamples = 1\nvalue = [0, 1]’),
Text(0.625, 0.1, ‘gini = 0.0\nsamples = 5\nvalue = [5, 0]’),
Text(0.75, 0.7, ‘x[1] <= 3.6\ngini = 0.175\nsamples = 31\nvalue = [3, 28]’),
Text(0.625, 0.5, ‘gini = 0.0\nsamples = 28\nvalue = [0, 28]’),
Text(0.875, 0.5, ‘gini = 0.0\nsamples = 3\nvalue = [3, 0]’)]
在这里插入图片描述
也可以导出树

tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:dot_graph = f.read()
graphviz.Source(dot_graph)

在这里插入图片描述
或者,还可以使用函数 export_text以文本格式导出树。此方法不需要安装外部库,而且更紧凑:

from sklearn.tree import export_text
r = export_text(clf)
print(r)

|— feature_0 <= 5.45
| |— feature_1 <= 2.65
| | |— class: 1.0
| |— feature_1 > 2.65
| | |— feature_0 <= 5.35
| | | |— class: 0.0
| | |— feature_0 > 5.35
| | | |— feature_1 <= 3.20
| | | | |— class: 1.0
| | | |— feature_1 > 3.20
| | | | |— class: 0.0
|— feature_0 > 5.45
| |— feature_1 <= 3.60
| | |— class: 1.0
| |— feature_1 > 3.60
| | |— class: 0.0

决策树回归

import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))
# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)# Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)# Plot the results
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

在这里插入图片描述

Scikit-learn 的决策树参数

DecisionTreeClassifier(criterion=“gini”,
splitter=“best”,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features=None,
random_state=None,
max_leaf_nodes=None,
min_impurity_decrease=0.,
min_impurity_split=None,
class_weight=None,
presort=False)

参数含义:
1.criterion:string, optional (default=“gini”)
(1).criterion=‘gini’,分裂节点时评价准则是Gini指数。
(2).criterion=‘entropy’,分裂节点时的评价指标是信息增益。
2.max_depth:int or None, optional (default=None)。指定树的最大深度。
如果为None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点
中所有的样本点都属于同一个类别。或者每个叶子节点包含的样本数小于min_samples_split。
3.splitter:string, optional (default=“best”)。指定分裂节点时的策略。
(1).splitter=‘best’,表示选择最优的分裂策略。
(2).splitter=‘random’,表示选择最好的随机切分策略。
4.min_samples_split:int, float, optional (default=2)。表示分裂一个内部节点需要的做少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每次分裂最少样本数为ceil(min_samples_split * n_samples)
5.min_samples_leaf: int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每个叶子节点最少样本数为ceil(min_samples_leaf * n_samples)
6.min_weight_fraction_leaf:float, optional (default=0.)
指定叶子节点中样本的最小权重。
7.max_features:int, float, string or None, optional (default=None).
搜寻最佳划分的时候考虑的特征数量。
(1).如果为整数,每次分裂只考虑max_features个特征。
(2).如果为浮点数(0到1之间),每次切分只考虑int(max_features * n_features)个特征。
(3).如果为’auto’或者’sqrt’,则每次切分只考虑sqrt(n_features)个特征
(4).如果为’log2’,则每次切分只考虑log2(n_features)个特征。
(5).如果为None,则每次切分考虑n_features个特征。
(6).如果已经考虑了max_features个特征,但还是没有找到一个有效的切分,那么还会继续寻找
下一个特征,直到找到一个有效的切分为止。
8.random_state:int, RandomState instance or None, optional (default=None)
(1).如果为整数,则它指定了随机数生成器的种子。
(2).如果为RandomState实例,则指定了随机数生成器。
(3).如果为None,则使用默认的随机数生成器。
9.max_leaf_nodes: int or None, optional (default=None)。指定了叶子节点的最大数量。
(1).如果为None,叶子节点数量不限。
(2).如果为整数,则max_depth被忽略。
10.min_impurity_decrease:float, optional (default=0.)
如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
加权不纯度的减少量计算公式为:
min_impurity_decrease=N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
其中N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数,
N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指
分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。
11.min_impurity_split:float
树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。
12.class_weight:dict, list of dicts, “balanced” or None, default=None
类别权重的形式为{class_label: weight}
(1).如果没有给出每个类别的权重,则每个类别的权重都为1。
(2).如果class_weight=‘balanced’,则分类的权重与样本中每个类别出现的频率成反比。
计算公式为:n_samples / (n_classes * np.bincount(y))
(3).如果sample_weight提供了样本权重(由fit方法提供),则这些权重都会乘以sample_weight。
13.presort:bool, optional (default=False)
指定是否需要提前排序数据从而加速训练中寻找最优切分的过程。设置为True时,对于大数据集
会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。

决策树调参

# 导入库
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics
# 导入数据集
X = datasets.load_iris()  # 以全部字典形式返回,有data,target,target_names三个键
data = X.data
target = X.target
name = X.target_names
x, y = datasets.load_iris(return_X_y=True)  # 能一次性取前2个
print(x.shape, y.shape)

(150, 4) (150,)

# 数据分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=100)
# 用GridSearchCV寻找最优参数(字典)
param = {'criterion': ['gini'],'max_depth': [30, 50, 60, 100],'min_samples_leaf': [2, 3, 5, 10],'min_impurity_decrease': [0.1, 0.2, 0.5]
}
grid = GridSearchCV(DecisionTreeClassifier(), param_grid=param, cv=6)
grid.fit(x_train, y_train)
print('最优分类器:', grid.best_params_, '最优分数:', grid.best_score_)  # 得到最优的参数和分值

最优分类器: {‘criterion’: ‘gini’, ‘max_depth’: 50, ‘min_impurity_decrease’: 0.2, ‘min_samples_leaf’: 2} 最优分数: 0.9416666666666665

参考:

  • https://github.com/fengdu78/lihang-code

  • 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019.

  • https://scikit-learn.org

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/136070.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker的基本操作

Docker的基本操作 操作常见指令 # 推送镜像到服务 docker push # 从服务拉去镜像 docker pull # 构建镜像 docker build # 保存镜像为一个压缩包 docker save # 加载镜像 docker load镜像加载、删除等 拉取nginx docker pull nginx查看镜像 docker images # 只查看id doc…

SpringBoot2.0(mybatis-plus常见的增删改查和分页)

目录 一&#xff0c;mybatis-plus常见注解二&#xff0c;创建一个工具类和启动类三&#xff0c;创建实体类四&#xff0c;创建mapper接口五&#xff0c;创建service接口和impl类六&#xff0c;创建配置类七&#xff0c;创建controller八&#xff0c;使用测试工具测试增删改查和…

C数据结构二.练习题

一.求级数和 2.求最大子序列问题:设给定一个整数序列 ai.az..,a,(可能有负数).设计一个穷举算法,求a 的最大值。例如,对于序列 A {1,-1,1,-1,-1,1,1,1,1.1,-1,-1.1,-1,1,-1},子序列 A[5..9](1,1,1,1,1)具有最大值5 3.设有两个正整数 m 和n,编写一个算法 gcd(m,n),求它们的最大公…

在JavaScript中,什么是尾递归优化(tail call optimization)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 尾递归优化&#xff08;Tail Call Optimization&#xff09;⭐ 递归和调用栈⭐ 尾递归⭐ 尾递归优化的好处⭐ JavaScript的尾递归优化支持⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链…

Android只需要一分钟生产1到1000的dimens.xml中带命名尺寸

先上效果图&#xff1a;一分钟实现下面的效果&#xff01; 下面是教程&#xff1a; 1、使用下面的方法&#xff1a; private val listDpDimen arrayListOf<String>()private fun initDimen() {listDpDimen.clear()for (i in 1..1000) {val s "<dimen name\&qu…

微服务保护-授权规则/规则持久化

授权规则 基本规则 授权规则可以对调用方的来源做控制&#xff0c;有白名单和黑名单两种方式。 白名单&#xff1a;来源&#xff08;origin&#xff09;在白名单内的调用者允许访问 黑名单&#xff1a;来源&#xff08;origin&#xff09;在黑名单内的调用者不允许访问 点…

科技资讯|苹果虚拟纸可在Vision Pro中为广告、书籍等提供MR内容和动画

近日&#xff0c;美国专利商标局正式授予苹果一项与虚拟纸张相关的专利。这是与虚拟纸张这项发明相关的第二项专利&#xff0c;鉴于苹果 Vision Pro 将于明年上市&#xff0c;那么我们离苹果实现虚拟纸张的发明又近了一步。 虚拟纸张将能够包含 2D、3D 和动画等 MR内容&#…

python使用SMTP发送邮件

SMTP是发送邮件的协议&#xff0c;Python内置对SMTP的支持&#xff0c;可以发送纯文本邮件、HTML邮件以及带附件的邮件。 Python对SMTP支持有smtplib和email两个模块&#xff0c;email负责构造邮件&#xff0c;smtplib负责发送邮件。 首先&#xff0c;我们来构造一个最简单的…

2、ARM处理器概论

一、ARM处理器概述 1、ARM的含义 ARM&#xff08;Advanced RISC Machines&#xff09;有三种含义&#xff0c;一个公司的名称、一类处理器的通称、一种技术 ARM公司&#xff1a; 成立于1990年11月&#xff0c;前身为Acorn计算机公司主要设计ARM系列RISC处理器内核授权ARM内…

Linux安装kafka-manager

相关链接https://github.com/yahoo/kafka-manager/releases kafka-manager-2.0.0.2下载地址 百度云链接&#xff1a;https://pan.baidu.com/s/1XinGcwpXU9YBF46qkrKS_A 提取码&#xff1a;tzvg 一、安装部署 1.把kafka-manager-2.0.0.2.zip拷贝到目录 /opt/app/elk 2.解压…

上四休三,未来的期许

近日“少上一天班&#xff0c;究竟香不香”引发关注&#xff0c;英国媒体2月21日报道&#xff0c;一项全世界目前为止参加人数最多的“四天工作制”试验&#xff0c;不久前在英国取得了成功。很多人表示上过四天班之后&#xff0c;给多少钱也回不去五天班的时代了。 来百度APP畅…

three.js——GUI的使用

GUI的使用 效果图1、导入gui2、创建一个GUI对象3、通过gui调用方法 name:按钮的名称 效果图 1、导入gui // 导入ligui import { GUI } from three/examples/jsm/libs/lil-gui.module.min.js2、创建一个GUI对象 const gui new GUI()3、通过gui调用方法 name:按钮的名称 // 创…

【Java 基础篇】Java标准输入流详解:读取用户输入的完整指南

Java是一门流行的编程语言&#xff0c;常用于开发各种类型的应用程序&#xff0c;包括控制台应用、桌面应用、Web应用等。在这些应用中&#xff0c;与用户进行交互是一项重要的任务。本文将重点介绍Java标准输入流&#xff0c;它是Java程序中用于从用户获取输入的关键组成部分。…

Python变量

变量声明 变量的使用过程一般需要经过声明、初始化和赋值&#xff0c;而Python 是(动态类型语言)解释型脚本语言&#xff0c;不需要编译&#xff0c;即不需要预先声明变量的类型&#xff0c;拿过来就能用。 Python属于解释型脚本语言&#xff0c;不需要编译&#xff0c;变量也不…

利用Pycharm将python程序打包为exe文件(亲测可用)

最近做了一个关于py的小项目&#xff0c;对利用Pycharm将python文件打包为exe文件不是很熟悉&#xff0c;故学习记录之。 目录 一、下载pyinstaller库 二、打开Pycharm进行打包&#xff08;不更改图标&#xff09; 三、打开Pycharm进行打包&#xff08;更改图标&#xff09…

常见入门级进销存系统合集

进销存系统是企业管理中不可或缺的一环&#xff0c;它们可以帮助企业有效管理库存、销售和采购等关键业务。然而&#xff0c;对于初创企业和小型企业来说&#xff0c;选择一个合适的进销存系统可能是一项挑战。在这篇文章中&#xff0c;我们将探讨入门级和资深级进销存系统之间…

递归视角下

def listSum(numbers): if not numbers: return 0 else: (f, rest) numbers return f listSum(rest)myList (1, (2, (3, (4,None))))total listSum(myList)print(total) while循环何时退出&#xff1f; 恐怕是while循环技巧所在&#xff0c;即选择恰…

Linux学习之Redis集群部署

Redis集群部署 准备集群环境 创建集群 # 准备集群环境--配置192.168.88.51(host51) [rootlocalhost ~]# yum install -y redis [roothost51 ~]# vim /etc/redis.conf bind 192.168.88.51 cluster-enabled yes cluster-config-file nodes-6379.conf cluster-node-timeout 5000…

malloc是如何实现内存分配的?

文章目录 前言一、malloc实现原理概括&#xff1f;二、brk() 函数与mmap()函数三、mmap实现原理普通读写与mmap对比mmap内存映射实现过程mmap 的适用场景 前言 在C和C中&#xff0c;malloc函数是用于动态分配内存的常用函数。本文将深入探究malloc函数的内存分配实现机制&…

【Vue入门】语法 —— 插值、指令、过滤器、计算属性、监听器

目录 一、模版语法 1.1 插值 1.1.1 文本 1.1.2 html解析 1.1.3 属性 1.1.4 表达式 1.2 指令 1.2.1 核心指令 1.2.3 动态参数 二、过滤器 2.1 局部过滤器 2.2 全局过滤器 三、计算属性 四、监听器 五、排座案例 小结&#xff1a;计算属性和监听属性的区别 一、模…