【算法分析与设计】回溯法(上)

目录

  • 一、学习要点
    • 1.1 回溯法
    • 1.2 问题的解空间
    • 1.3 0-1背包问题的解空间
    • 1.4 旅行售货员问题的解空间
    • 1.5 生成问题状态的基本方法
  • 二、回溯法的基本思想
  • 三、回溯算法的适用条件
  • 四、递归回溯
  • 五、迭代回溯
  • 六、子集树与排列树
  • 七、装载问题
  • 八、批处理作业调度问题


一、学习要点

  理解回溯法的深度优先搜索策略。
  掌握用回溯法解题的算法框架
  (1)递归回溯
  (2)迭代回溯
  (3)子集树算法框架
  (4)排列树算法框架

  通过应用范例学习回溯法的设计策略。
  (1)装载问题;
  (2)批处理作业调度;
  (3)符号三角形问题
  (4)n后问题;
  (5)0-1背包问题;
  (6)最大团问题;
  (7)图的m着色问题
  (8)旅行售货员问题
  (9)圆排列问题
  (10)电路板排列问题
  (11)连续邮资问题


1.1 回溯法

  有许多问题,当需要找出它的解集或者要求回答什么解是满足某些约束条件的最佳解时,往往要使用回溯法
  回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法 适用于解一些组合数相当大的问题
  回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯否则,进入该子树,继续按深度优先策略搜索


1.2 问题的解空间

  问题的解向量:回溯法希望一个问题的解能够表示成一个n元式(x1,x2,…,xn)的形式。
  显约束对分量xi的取值限定
  隐约束为满足问题的解而对不同分量之间施加的约束
  解空间:对于问题的一个实例,解向量满足显式约束条件的所有多元组,构成了该实例的一个解空间

  注意:同一个问题可以有多种表示,有些表示方法更简单,所需表示的状态空间更小(存储量少,搜索方法简单)。
  n=3时的0-1背包问题用完全二叉树表示的解空间:
在这里插入图片描述


1.3 0-1背包问题的解空间

  问题的解空间应该至少包含问题的一个(最优)解
  对于n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成
  当n=3时,其解空间为{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}
  解空间其实就是解的集合


1.4 旅行售货员问题的解空间

  问题:某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费)。他要选择一条从驻地出发,经过每个城市一遍,然后回到驻地的路线,使总的路程(总旅费)最小。
在这里插入图片描述
在这里插入图片描述


1.5 生成问题状态的基本方法

  白结点:未被访问到的结点
  灰结点:一个自身已生成但其儿子还没有全部生成的节点称做灰结点
  黑结点:一个所有儿子已经产生的结点称做黑结点
  深度优先的问题状态生成法:如果对一个扩展结点R,一旦产生了它的一个儿子C,就把C当做新的扩展结点。在完成对子树C(以C为根的子树)的穷尽搜索之后,将R重新变成扩展结点,继续生成R的下一个儿子(如果存在)。
  宽度优先的问题状态生成法:在一个扩展结点变成黑结点之前,它一直是扩展结点。
  回溯法为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。具有限界函数的深度优先生成法称为回溯法


二、回溯法的基本思想

  (1)针对所给问题,定义问题的解空间
  (2)确定易于搜索的解空间结构
  (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
  常用剪枝函数
  用约束函数在扩展结点处剪去不满足约束的子树
  用限界函数剪去得不到最优解的子树

  用回溯法解题的一个显著特征是在搜索过程中动态产生问题的解空间在任何时刻,算法只保存从根结点到当前扩展结点的路径。如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为O(h(n))。而显式地存储整个解空间则需要O(2h(n))或O(h(n)!)内存空间。


三、回溯算法的适用条件

  在结点<x1,x2,…,xk>处P(x1,x2,…,xk)为真。即向量<x1,x2,…,xk>满足某个性质,则有P(x1,x2,…,xk+1)-> P(x1,x2,…,xk) 0<k<n。称之为多米诺性质
  ┐ P(x1,x2,…,xk) ->┐ P(x1,x2,…,xk+1) 0<k<n
  k维向量不满足约束条件,扩张向量到k+1维仍旧不满足,才可以进行回溯


四、递归回溯

  回溯法对解空间作深度优先搜索,因此,在一般情况下用递归方法实现回溯法

void backtrack (int t)
{if (t>n) output(x);elsefor (int i=f(n,t);i<=g(n,t);i++) {x[t]=h(i);if (constraint(t)&&bound(t)) backtrack(t+1);}
}

五、迭代回溯

  采用 树的非递归深度优先遍历算法,可将回溯法表示为一个非递归迭代过程

void iterativeBacktrack ()
{int t=1;while (t>0) {if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) {x[t]=h(i);if (constraint(t)&&bound(t)) {if (solution(t)) output(x);else t++;}}else t--;}
}

六、子集树与排列树

  当所给问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间树称为子集树(2n)。
  当所给问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树(n!)。
在这里插入图片描述
  遍历子集树需O(2n)计算时间

void backtrack (int t)
{if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1);}
}

在这里插入图片描述
  遍历排列树需要O(n!)计算时间

void backtrack (int t)
{if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1);swap(x[t], x[i]);}
} 

七、装载问题

  有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量为wi,且在这里插入图片描述
  装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。
  将第一艘轮船尽可能装满等价于选取全体集装箱的一个子集,使该子集中集装箱重量之和最接近。由此可知,装载问题等价于以下特殊的0-1背包问题。
在这里插入图片描述
  用回溯法设计解装载问题的O(2n)计算时间算法。在某些情况下该算法优于动态规划算法

  当n=3,c1=c2=50,且w=[10,40,40]
  如果w=[20,40,40]
  最优装载方案
  (1)首先将第一艘轮船尽可能装满
  (2)将剩余的集装箱装上第二艘轮船

  解空间:子集树
  可行性约束函数(选择当前元素):
  上界函数(不选择当前元素)
  当前载重量cw+剩余集装箱的重量r≤当前最优载重量bestw

void backtrack (int i){// 搜索第i层结点if (i > n)  // 到达叶结点更新最优解bestx,bestw;return;r -= w[i];if (cw + w[i] <= c) {// 搜索左子树x[i] = 1;cw += w[i];backtrack(i + 1);cw -= w[i];      }if (cw + r > bestw)  {x[i] = 0;  // 搜索右子树backtrack(i + 1);      }r += w[i];}

在这里插入图片描述


八、批处理作业调度问题

  n个作业{1, 2, …, n}要在两台机器上处理,每个作业必须先由机器1处理,然后再由机器2处理,机器1处理作业i所需时间为ai,机器2处理作业i所需时间为bi(1≤i≤n),批处理作业调度问题要求确定这n个作业的最优处理顺序,使得从第1个作业在机器1上处理开始,到最后一个作业在机器2上处理结束所需时间最少。
  显然,批处理作业的一个最优调度应使机器1没有空闲时间,且机器2的空闲时间最小。可以证明,存在一个最优作业调度使得在机器1和机器2上作业以相同次序完成

  例:三个作业{1, 2, 3},这三个作业在机器1上所需的处理时间为(2, 3, 2),在机器2上所需的处理时间为(1, 1, 3),则最佳调度方案是(1, 3, 2)、(3, 1, 2)和(3, 2, 1),其完成时间为8。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
  解空间:排列树

void Flowshop::Backtrack(int i)
{if (i > n) {for (int j = 1; j <= n; j++)bestx[j] = x[j];bestf = f;}elsefor (int j = i; j <= n; j++) {f1+=M[x[j]][1];f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+M[x[j]][2];f+=f2[i];if (f < bestf) {Swap(x[i], x[j]);Backtrack(i+1);Swap(x[i], x[j]);}f1- =M[x[j]][1];f- =f2[i];}
}

在这里插入图片描述

class Flowshop {friend Flow(int**, int, int []);private:void Backtrack(int i);int  **M,    // 各作业所需的处理时间*x,     // 当前作业调度*bestx,    // 当前最优作业调度*f2,    // 机器2完成处理时间f1,    // 机器1完成处理时间f,     // 完成时间和bestf,    // 当前最优值n;   // 作业数}; 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/146968.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解

这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同&#xff0c;区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点&#xff0c;并相互指向&#xff0c;在第一次添加节点时&#xff0c;不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…

92、Redis ------- 使用 Lettuce 操作 Redis 的方法和步骤----(文字讲解无代码)

lettuce &#xff1a;英语的意思&#xff1a;生菜 是一个用来操作redis的框架&#xff0c;springboot内置默认支持的也是 lettuce &#xff0c;也可以自己改成 jedis Jedis 也是一个用来操作redis的框架 ★ Lettuce的核心API RedisURI&#xff1a;用于封装Redis服务器的URI信息…

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石⑤

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石⑤ 第十九章 驱动程序基石⑤19.9 mmap19.9.1 内存映射现象与数据结构19.9.2 ARM架构内存映射简介19.9.2.1 一级页表映射过程19.9.2.2 二级页表映射过程 19.9.3 怎么给APP新建一块内存映射19.9.3.1 mmap调用过程19.9.3.2 cach…

数据结构:简单记录顺序表、链表、栈、队列

初学者很容易认为顺序表、链表、栈、队列是四种并列的数据结构&#xff0c;其实仔细想想并不是。 注意区分&#xff1a; 顺序表和链表是指数据的存储结构&#xff0c;是线性表的一种&#xff0c;顺序表一般指的就是数组&#xff0c;数据存储的逻辑顺序和物理顺序都是连续的&a…

nodejs+vue交通违章查询及缴费elementui

第三章 系统分析 10 3.1需求分析 10 3.2可行性分析 10 3.2.1技术可行性&#xff1a;技术背景 10 3.2.2经济可行性 11 3.2.3操作可行性&#xff1a; 11 3.3性能分析 11 3.4系统操作流程 12 3.4.1管理员登录流程 12 3.4.2信息添加流程 12 3.4.3信息删除流程 13 第四章 系统设计与…

Django模板加载与响应

前言 Django 的模板系统将 Python 代码与 HTML 代码解耦&#xff0c;动态地生成 HTML 页面。Django 项目可以配置一个或多个模板引擎&#xff0c;但是通常使用 Django 的模板系统时&#xff0c;应该首先考虑其内置的后端 DTL&#xff08;Django Template Language&#xff0c;D…

Git使用【下】

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析&#xff08;3&#xff09; 目录 &#x1f449;&#x1f3fb;标签管理理解标签标签运用 …

Grander因果检验(格兰杰)原理+操作+解释

笔记来源&#xff1a; 1.【传送门】 2.【传送门】 前沿原理介绍 Grander因果检验是一种分析时间序列数据因果关系的方法。 基本思想在于&#xff0c;在控制Y的滞后项 (过去值) 的情况下&#xff0c;如果X的滞后项仍然有助于解释Y的当期值的变动&#xff0c;则认为 X对 Y产生…

插入排序与希尔排序

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 前言&#xff1a; 这两个排序在思路上有些相似&#xff0c;所以有人觉得插入排序和希尔排序差别不大&#xff0c;事实上&#xff0c;他们之间的差别不小&#xff0c;插入排序只是希尔排序的最后一步。 目录 前言&#xff1a;…

华为数通方向HCIP-DataCom H12-831题库(单选题:161-180)

第161题 某台路由器Router LSA如图所示,下列说法中错误的是? A、本路由器已建立邻接关系 B、本路由器为DR C、本路由支持外部路由引入 D、本路由器的Router ID为10.0.12.1 答案: B 解析: 一类LSA的在transnet网络中link id值为DR的route id ,但Link id的地址不是10.0.12.…

对pyside6中的textedit进行自定义,实现按回车可以触发事件。

以下方法不算最优解。因为这个ui文件很容易重新编译&#xff0c;使写在ui.py里面的代码被删掉。 所以更好的方法应该是在主代码当中单独定义控件。并且使用布局添加控件到界面中。 以下内容纯为旧版实现&#xff0c;仅供参考&#xff1a; 我的实现方法是&#xff0c;先用qt de…

学信息系统项目管理师第4版系列15_资源管理基础

1. 项目资源 1.1. 实物资源 1.1.1. 着眼于以有效和高效的方式&#xff0c;分配和使用完成项目所需的实物资源 1.1.2. 包括设备、材料、设施和基础设施 1.2. 团队资源 1.2.1. 人力资源 1.2.2. 包含了技能和能力要求 2. 人力资源管理 2.1. 不仅是组织中最重要的资源之一&…

设计模式之抽象工厂模式--创建一系列相关对象的艺术(简单工厂、工厂方法、到抽象工厂的进化过程,类图NS图)

目录 概述概念适用场景结构类图 衍化过程业务需求基本的数据访问程序工厂方法实现数据访问程序抽象工厂实现数据访问程序简单工厂改进抽象工厂使用反射抽象工厂反射配置文件衍化过程总结 常见问题总结 概述 概念 抽象工厂模式是一种创建型设计模式&#xff0c;它提供了一种将相…

【开发篇】十、Spring缓存:手机验证码的生成与校验

文章目录 1、缓存2、用HashMap模拟自定义缓存3、SpringBoot提供缓存的使用4、手机验证码案例完善 1、缓存 缓存是一种介于数据永久存储介质与数据应用之间的数据临时存储介质使用缓存可以有效的减少低速数据读取过程的次数&#xff08;例如磁盘IO&#xff09;&#xff0c;提高…

Shapiro-Francia正态检验

Shapiro-Francia检验是一种用于检验数据是否来自正态分布的统计方法。它是Shapiro-Wilk检验的一个变种&#xff0c;通常适用于小到中等样本大小的数据集。Shapiro-Francia检验的核心思想是通过计算统计量来评估数据的正态性。 Shapiro-Francia检验的零假设是数据来自正态分布&…

26 docker前后端部署

[参考博客]((257条消息) DockerNginx部署前后端分离项目(SpringBootVue)的详细教程_在docker中安装nginx实现前后端分离_这里是杨杨吖的博客-CSDN博客) (DockerNginx部署前后端分离项目(SpringBootVue)) 安装docker # 1、yum 包更新到最新 yum update # 2、安装需要的软件包…

JavaSE | 初识Java(七) | 数组 (下)

Java 中提供了 java.util.Arrays 包 , 其中包含了一些操作数组的常用方法 代码实例&#xff1a; import java.util.Arrays int[] arr {1,2,3,4,5,6}; String newArr Arrays.toString(arr); System.out.println(newArr); // 执行结果 [1, 2, 3, 4, 5, 6] 数组拷贝 代码实例…

cf 解题报告 01

E. Power of Points Problem - 1857E - Codeforces 题意&#xff1a; 给你 n n n 个点&#xff0c;其整数坐标为 x 1 , … x n x_1,\dots x_n x1​,…xn​&#xff0c;它们位于一条数线上。 对于某个整数 s s s&#xff0c;我们构建线段[ s , x 1 s,x_1 s,x1​], [ s , x…

C语言结构体指针学习

结构体变量存放内存中&#xff0c;也有起始地址&#xff0c;定义一个变量来存放这个地址&#xff0c;那这个变量就是结构体指针&#xff1b; typedef struct mydata{int a1;int a2;int a3; }mydata;void CJgtzzView::OnDraw(CDC* pDC) {CJgtzzDoc* pDoc GetDocument();ASSERT…

npm ,yarn 更换使用国内镜像源,淘宝源

背景 文章首发地址 在平时开发当中&#xff0c;我们经常会使用 Npm&#xff0c;yarn 来构建 web 项目。但是npm默认的源的服务器是在国外的&#xff0c;如果没有梯子的话。下载速度会特别慢。那有没有方法解决呢&#xff1f; 其实是有的&#xff0c;设置国内镜像即可&#x…