ChatGPT基础使用总结

文章目录

    • 一、ChatGPT基础概念
      • 大型语言模型LLMs---一种能够以类似人类语言的方式“说话”的软件
      • ChatGPT定义---OpenAI 研发的一款聊天机器人程序(2022年GPT-3.5,属于大型语言模型)
      • ChatGPT4.0---OpenAI推出了GPT系列的最新模型
      • ChatGPT典型使用场景---问答,写作,编程,数据分析
      • ChatGPT局限和问题---语义理解,一致性,验伪能力,偏见倾向
    • 二、ChatGPT提问使用技巧
      • 1. 通用提问模板,设定角色+描述问题+指定目标+补充要求;
      • 2. 通过继续指令,让 篇幅限制 的答案继续输出;
      • 3. 先框架后展开,通过补充要求追问 获取 完整内容;
      • 4. 通过明确的 肯定 和 否定 进行调教,得到最终结果;
      • 5. 新话题开启时,告知初始化GPT,避免干扰;
    • 三、程序员使用ChatGPT的典型举例
      • 1、用ChatGPT整理 岗位 技能要求
      • 2、利用ChatGPT讲解技术点
      • 3、利用ChatGPT生成代码
      • 4、利用ChatGPT解释旧代码
      • 5、利用ChatGPT进行代码Review
      • 6、利用ChatGPT进行代码错误Debug
    • 参考

一、ChatGPT基础概念

大型语言模型LLMs—一种能够以类似人类语言的方式“说话”的软件

大型语言模型:Large Language Models,LLMs。这些语言模型通过分析大量的文本数据并学习语言使用的模式来工作。它们利用这些模式生成的文本几乎无法与人类所说或写的内容区分开来。比如,BERT(谷歌开发的一种预训练深度学习模型),GPT-4(OpenAI推出了GPT系列的最新模型)。

ChatGPT定义—OpenAI 研发的一款聊天机器人程序(2022年GPT-3.5,属于大型语言模型)

ChatGPT:Chat Generative Pre-trained Transformer。属于大型语言模型。它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文 等任务。

ChatGPT4.0—OpenAI推出了GPT系列的最新模型

大型语言模型比其前身GPT-3的1750亿个参数更高,达到了惊人的1万亿个参数。GPT-4的关键优势与GPT-3类似,在大量文本数据上进行了广泛的预训练,使其能够学习极其多样的语言特征和关系。

ChatGPT典型使用场景—问答,写作,编程,数据分析

对话生成:ChatGPT可与用户进行流畅、自然的对话,可应用在客户服务、智能助手和聊天机器人等领域。
自动编写文章:ChatGPT具备强大的文本生成能力,可广泛应用于新闻撰写、博客创作、营销宣传等内容创作领域。
编程帮助: ChatGPT可以理解和生成编程语言,如 按需求提供代码,旧代码讲解,代码检查,问题调试。
语言翻译:ChatGPT能够实现多语言之间的实时翻译,为跨语言交流提供便利。
教育辅导: ChatGPT可以作为在线教育辅导工具,帮助学生解答各类学术问题。
创意写作: ChatGPT可以作为一种创意工具,可以提供脑暴方向,帮助用户进行故事创作、诗歌写作等。
数据分析与摘要: ChatGPT可以从大量数据和文本中提取关键信息,生成简洁明了的摘要。

ChatGPT局限和问题—语义理解,一致性,验伪能力,偏见倾向

ChatGPT作为一种大规模语言模型,存在一些限制和缺陷,典型如下:
1)语义理解的不足。由于自然语言的歧义性和语境依赖性,ChatGPT难以正确理解和解释自然语言中的复杂语义。
2)缺乏一致性。由于基于单个对话来训练的,可能在相同话题上给出不一致或矛盾的回答。
3)错误虚假信息判断。ChatGPT倾向于生成具有说服力回答,即使这些回答是错误或没有根据,它缺乏事实验证能力。
4)倾向性和偏见。ChatGPT是通过大量的互联网数据进行预训练的,因此它可能会反映出网络内容中的倾向性和偏见。
5)对多语言的支持不足。ChatGPT作为一种英语语言模型,其对其他语言的支持仍然不足。

二、ChatGPT提问使用技巧

GPT 生成的答案质量,完全取决于你 问它 以及 引导它 的方式,也就是给的提示词。
典型的提问公式:提示词=设计角色+问题描述+确定目标+补充要求

1. 通用提问模板,设定角色+描述问题+指定目标+补充要求;

设定角色 能让ChatGPT处于专家模式,这一点很重要,比如 假定是 一名导游,一位经验丰富的Python语言专家,一个文案写作专家。不进行设定的情况下,ChatGPT愿意给出更普通、中庸、通俗化、更简单的描述。
举例 1)旅游攻略推荐;
在这里插入图片描述
相应的,和ChatGPT介绍自己的角色,也可以得到更恰当的回答,比如 初学者,或者 有xxx经验的角色;

2. 通过继续指令,让 篇幅限制 的答案继续输出;

当构建信息篇幅过长时,会在输出一定量内容比如300字之后,停止输出,此时可以输入 继续 让答案继续输出。
同时可以在继续时进行追问,并可以补充要求;

3. 先框架后展开,通过补充要求追问 获取 完整内容;

当内容过多时,可以先让ChatGPT做一次解答生成一个提纲,再根据解答的点进行进一步扩展。

4. 通过明确的 肯定 和 否定 进行调教,得到最终结果;

为了获得更准确的答案,可以通过在多次交流调整,改善回答的语气、重点、描述范围。
比如 让ChatGPT用 鲁迅、张爱玲等 语气 来描述一段内容;

5. 新话题开启时,告知初始化GPT,避免干扰;

ChatGPT是基于上下文会话的。为了避免之前的交流 影响了新的提问,可以明确让ChatGPT忘记之前的交流 打开新会话。

三、程序员使用ChatGPT的典型举例

1、用ChatGPT整理 岗位 技能要求

在这里插入图片描述
在这里插入图片描述

2、利用ChatGPT讲解技术点

在这里插入图片描述

3、利用ChatGPT生成代码

在这里插入图片描述

4、利用ChatGPT解释旧代码

在这里插入图片描述
在这里插入图片描述

5、利用ChatGPT进行代码Review

在这里插入图片描述
在这里插入图片描述

6、利用ChatGPT进行代码错误Debug

在这里插入图片描述

参考

大型语言模型(Large Language Models,LLMs)概览:https://zhuanlan.zhihu.com/p/639318309
ChatGpt官网:https://openai.com/blog/chatgpt
ChatGPT 从零完全上手实操指南:https://zhuanlan.zhihu.com/p/623911710
30分钟学完这28个ChatGPT使用技巧:https://www.bilibili.com/video/BV1a8411Q73z/
利用ChatGPT学习编程:https://blog.csdn.net/jingyoushui/article/details/131884438

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149243.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【实操记录】Oracle数据整库同步至Apache Doris

本文是Oracle数据整库同步至Apache Doris实操记录,仅供参考 参考:https://cn.selectdb.com/blog/104 1、Oracle 配置 [rootnode1 oracle]# pwd /u01/app/oracle [rootnode1 oracle]# mkdir recovery_area [rootnode1 oracle]# chown -R oracle:dba re…

CleanMyMac X4.14.1最新版本下载

CleanMyMac X是一个功能强大的Mac清理软件,它的设计理念是提供多个模块,包括垃圾清理、安全保护、速度优化、应用程序管理和文档管理粉碎等,以满足用户的不同需求。软件的界面简洁直观,让用户能够轻松进行日常的清理操作。 使用C…

C/S架构学习之TCP的三次握手和四次挥手

TCP的三次握手:一定由客户端主动发起的,发生在建立连接的过程中。此过程发生在客户端的connect()函数和服务器的accept()函数之间。第一次握手:客户端向服务器发送一个带有SYN标志的数据包,表示客户端请求建立连接。并且客户端会选…

GEE土地分类——Property ‘B1‘ of feature ‘LE07_066018_20220603‘ is missing.错误

简介: 我正在尝试使用我在研究区域中选择的训练点对图像集合中的每个图像进行分类。就背景而言,我正在进行的项目正在研究陆地卫星生命周期内冰川面积的变化以及随后的植被变化。这意味着自 1984 年以来,我正在处理大量图像,每年一…

卷积神经网络-池化层和激活层

2.池化层 根据特征图上的局部统计信息进行下采样,在保留有用信息的同时减少特征图的大小。和卷积层不同的是,池化层不包含需要学习的参数。最大池化(max-pooling)在一个局部区域选最大值作为输出,而平均池化(average pooling)计算一个局部区…

Elasticsearch数据操作原理

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎,设计用于云计算环境中,能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性,可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…

Apollo Planning2.0决策规划算法代码详细解析 (2): vscode gdb单步调试环境搭建

前言: apollo planning2.0 在新版本中在降低学习和二次开发成本上进行了一些重要的优化,重要的优化有接口优化、task插件化、配置参数改造等。 GNU symbolic debugger,简称「GDB 调试器」,是 Linux 平台下最常用的一款程序调试器。GDB 编译器通常以 gdb 命令的形式在终端…

抄写Linux源码(Day14:从 MBR 到 C main 函数 (3:研究 head.s) )

回忆我们需要做的事情: 为了支持 shell 程序的执行,我们需要提供: 1.缺页中断(不理解为什么要这个东西,只是闪客说需要,后边再说) 2.硬盘驱动、文件系统 (shell程序一开始是存放在磁盘里的,所以需要这两个东…

vertx的学习总结7之用kotlin 与vertx搞一个简单的http

这里我就简单的聊几句&#xff0c;如何用vertx web来搞一个web项目的 1、首先先引入几个依赖&#xff0c;这里我就用maven了&#xff0c;这个是kotlinvertx web <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apac…

【C++】一文带你走入vector

文章目录 一、vector的介绍二、vector的常用接口说明2.1 vector的使用2.2 vector iterator的使用2.3 vector空间增长问题2.4 vector 增删查改 三、总结 ヾ(๑╹◡╹)&#xff89;" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)&#xff89;" 一、vector的介绍 vector…

[C国演义] 第十三章

第十三章 三数之和四数之和 三数之和 力扣链接 根据题目要求: 返回的数对应的下标各不相同三个数之和等于0不可包含重复的三元组 – – 即顺序是不做要求的 如: [-1 0 1] 和 [0, 1, -1] 是同一个三元组输出答案顺序不做要求 暴力解法: 排序 3个for循环 去重 — — N^3, …

企业微信机器人对接GPT

现在网上大部分微信机器人项目都是基于个人微信实现的&#xff0c;常见的类库都是模拟网页版微信接口。 个人微信作为我们自己日常使用的工具&#xff0c;也用于支付场景&#xff0c;很怕因为违规而被封。这时&#xff0c;可以使用我们的企业微信机器人&#xff0c;利用企业微信…

互联网Java工程师面试题·Elasticsearch 篇·第二弹

12、详细描述一下 Elasticsearch 索引文档的过程。 协调节点默认使用文档 ID 参与计算&#xff08;也支持通过 routing &#xff09;&#xff0c;以便为路由提供合适的分片。 shard hash(document_id) % (num_of_primary_shards) 1 、当分片所在的节点接收到来自协调节点…

Qt creator+cmake编译并安装

1、qt creator打开项目中的CMakeLists.txt 2、修改“构建设置“-“Cmake”-”Current Configuration“&#xff0c;其中&#xff0c;安装路径为CMAKE_INSTALL_PREFIX 3、修改“构建设置“-“构建的步骤”-”目标“&#xff0c;勾选"all"和"install" 4、构…

C语言qsort函数

排序qsort int int cmp(const void *a, const void *b) {return *(int *)a - *(int *)b;//先强转成int型&#xff0c;后解引用取值比较大小 }字符串数组 char a[] “hello world” //字符串数组&#xff0c;存放的是字符 int cmp(const void *a, const void *b) {return *(…

7.wifi开发【智能家居:终】,实践总结:智能开关,智能采集温湿,智能灯。项目运行步骤与运行细节,技术归纳与提炼,项目扩展

一。项目运行步骤与运行细节 1.项目运行步骤&#xff08;一定有其他的运行方式&#xff0c;我这里只提供一种我现在使用的编译方式&#xff09; &#xff08;1&#xff09;项目运行使用软件与技术&#xff1a; 1.Virtual linux 使用这个虚拟机进行程序的编译 2.Makefile与shl…

阿里云服务器镜像系统Anolis OS龙蜥详细介绍

阿里云服务器Anolis OS镜像系统由龙蜥OpenAnolis社区推出&#xff0c;Anolis OS是CentOS 8 100%兼容替代版本&#xff0c;Anolis OS是完全开源、中立、开放的Linux发行版&#xff0c;具备企业级的稳定性、高性能、安全性和可靠性。目前阿里云服务器ECS可选的Anolis OS镜像系统版…

【Java】猫和狗接口版本思路分析

目录 猫&#x1f431;和狗&#x1f415;&#xff08;接口版本&#xff09; 画图分析 案例代码 猫&#x1f431;和狗&#x1f415;&#xff08;接口版本&#xff09; 需求&#xff1a;对猫和狗进行训练&#xff0c;它们就可以跳高了&#xff0c;这里加入了跳高功能&#xff0…

Vue中实现自定义编辑邮件发送到指定邮箱(纯前端实现)

formspree里面注册账号 注册完成后进入后台新建项目并且新建表单 这一步完成之后你将得到一个地址 最后就是在项目中请求这个地址 关键代码如下&#xff1a; submitForm() {this.fullscreenLoading true;this.$axios({method: "post",url: "https://xxxxxxx…