Opencv和C++实现canny边缘检测_opencv边缘增强-CSDN博客
一、canny实现步骤
1、图像必须是单通道的,也就是说必须是灰度图像
2、图像进行高斯滤波,去掉噪点
3、sobel 算子过程的实现,计算x y方向 、梯度(用不到,但是可以看看xy 两个组合起来的结果)
以及梯度方向(很重要)
4、局部非极大值抑制
5、双阈值连接处理
具体可以分为上面的5个步骤,下面一起边看原理边实现。
二、原理与实现
1、图像灰度化
如果是一张3通道的图像,也就是我们常见的彩色图,那么们就需要将其转换成一个灰度图,其规则如下:
1.浮点算法:Gray = R*0.3 + G*0.59 + B*0.11
2.整数方法:Gray = (R*30+G*59+B*11)/100
3.移位方法:Gray = (R*28+G*151+B*77)>> 8
4.平均值法:Gray = (R+G+B)/3
5.仅取绿色:Gray = G
但是通常我们自己实现一般都是拿第一种实现的。
OpenCV转灰度图像特别简单,只需调用函数 cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 即可。
code:
void ConvertRGB2GRAY(const Mat& image, Mat& imageGray)
{if (!image.data || image.channels() != 3){return;}// 创建一个单通道的灰度图像imageGray = Mat::zeros(image.size(), CV_8UC1);// 取出存储图像的数组的指针 uchar* pointImage = image.data;uchar* pointImageGray = imageGray.data;int stepImage = image.step;int stepImageGray = imageGray.step;for (int i = 0; i < imageGray.rows; i++){for (int j = 0; j < imageGray.cols; j++){pointImageGray[i * stepImageGray + j] = 0.114 * pointImage[i * stepImage + 3 * j] + 0.587 * pointImage[i * stepImage + 3 * j + 1] + 0.299 * pointImage[i * stepImage + 3 * j + 2];}}
}
2、高斯滤波
在高斯滤波的时候先要生成一个2元高斯核,然后进行高斯滤波,其作用是去掉噪点,其图像变的平滑起来
二元高斯函数
随着sigma的增大,整个高斯函数的尖峰逐渐减小,整体也变的更加平缓,则对图像的平滑效果越来越明显。
高斯核
代码里面最后一定要归一化
void CreateGaussianKernel(int kernel_size, int sigma, Mat& kernel)
{const double PI = 3.1415926;int center = kernel_size / 2;kernel = Mat(kernel_size, kernel_size,CV_32FC1);float segma_pow = 2 * sigma * sigma; float sum = 0;// 二元高斯函数for (size_t i = 0; i < kernel_size; i++){for (size_t j= 0; j < kernel_size; j++){float temp = ((i - center) * (i - center) + (j - center) * (j - center) )/ segma_pow;kernel.at<float>(i, j) = 1 / (PI * segma_pow) * exp(-temp);sum += kernel.at<float>(i, j);}}// 归一化for (size_t i = 0; i < kernel_size; i++){for (size_t j = 0; j < kernel_size; j++){kernel.at<float>(i, j) = kernel.at<float>(i, j)/sum;}}}
5*5 的高斯核,那个核数一般是不能超过11 ,超过11 其效果均值一样了
高斯滤波
//******************高斯滤波*************************
//第一个参数imageSource是待滤波原始图像;
//第二个参数imageGaussian是滤波后输出图像;
//第三个参数 kernel 是一个指向含有N个double类型数组;
//第四个参数size是滤波核的尺寸
//*************************************************************
void GaussianFilter(const Mat& imageSource, Mat& imageGaussian, Mat& kernel, int size)
{if (!imageSource.data|| imageSource.channels()!=1){return;}imageGaussian = Mat::zeros(imageSource.size(),CV_8UC1);float gaussArray[100];// 将 kernel 的方阵 变成一个一维度数组 这样在循环的时候啊就少了一次内循环int m = 0;for (size_t i = 0; i < kernel.rows; i++){for (size_t j = 0; j < kernel.cols; j++){gaussArray[m] = kernel.at<float>(i,j);m++;}}//滤波for (int i = 0; i < imageSource.rows; i++){for (int j = 0; j < imageSource.cols; j++){int k = 0;for (int l = -size / 2; l <= size / 2; l++){for (int g = -size / 2; g <= size / 2; g++){//以下处理针对滤波后图像边界处理,为超出边界的值赋值为边界值int row = i + l;int col = j + g;row = row < 0 ? 0 : row;row = row >= imageSource.rows ? imageSource.rows - 1 : row;col = col < 0 ? 0 : col;col = col >= imageSource.cols ? imageSource.cols - 1 : col;//卷积和imageGaussian.at<uchar>(i, j) += gaussArray[k] * imageSource.at<uchar>(row, col);k++;}}}}}void TestGaussian()
{Mat kernel;CreateGaussianKernel(5, 1, kernel);// 打印 高斯核for (int i = 0; i < kernel.rows; i++){for (int j = 0; j < kernel.cols; j++){cout << " " << kernel.at<float>(i, j);}cout << endl;}Mat src = imread("C:\\Users\\alber\\Desktop\\opencv_images\\529.jpg");Mat dst, imageGaussian;ConvertRGB2GRAY(src, dst);imwrite("C:\\Users\\alber\\Desktop\\opencv_images\\1\\1.jpg", dst);GaussianFilter(dst, imageGaussian, kernel, 5);imwrite("C:\\Users\\alber\\Desktop\\GaussianFilter.jpg", imageGaussian);
}
3、实现sobel 算子
推导出X Y方向的核
【精选】Opencv 笔记5 边缘处理-canny、sobel、Laplacian、Prewitt_opencv 边缘处理_Σίσυφος1900的博客-CSDN博客
gradient =||dx||+||dy||
theta= atan(gradY / gradX) * 57.3 注意这里的角度转换
//******************Sobel算子计算X、Y方向梯度 以及 梯度方向角********************
//第一个参数imageSourc原始灰度图像;
//第二个参数imageSobelX是X方向梯度图像;
//第三个参数imageSobelY是Y方向梯度图像;
//第四个参数 theta 是梯度方向角数组指针 下一步很重要 就是要用这个值来计算
//*************************************************************
void SobelGradDirction(const Mat imageSource, Mat& imageX, Mat& imageY, Mat& gradXY, Mat& theta)
{imageX = Mat::zeros(imageSource.size(), CV_32SC1);imageY = Mat::zeros(imageSource.size(), CV_32SC1);gradXY = Mat::zeros(imageSource.size(), CV_32SC1);theta = Mat::zeros(imageSource.size(), CV_32SC1);int rows = imageSource.rows;int cols = imageSource.cols;int stepXY = imageX.step;int step = imageSource.step;/*Mat.step参数指图像的一行实际占用的内存长度,因为opencv中的图像会对每行的长度自动补齐(8的倍数),编程时尽量使用指针,指针读写像素是速度最快的,使用at函数最慢。*/uchar* PX = imageX.data;uchar* PY = imageY.data;uchar* P = imageSource.data;uchar* XY = gradXY.data;for (int i = 1; i < rows - 1; i++){for (int j = 1; j < cols - 1; j++){int a00 = P[(i - 1) * step + j - 1];int a01 = P[(i - 1) * step + j];int a02 = P[(i - 1) * step + j + 1];int a10 = P[i * step + j - 1];int a11 = P[i * step + j];int a12 = P[i * step + j + 1];int a20 = P[(i + 1) * step + j - 1];int a21 = P[(i + 1) * step + j];int a22 = P[(i + 1) * step + j + 1];double gradY = double(a02 + 2 * a12 + a22 - a00 - 2 * a10 - a20);double gradX = double(a00 + 2 * a01 + a02 - a20 - 2 * a21 - a22);imageX.at<int>(i, j) = abs(gradX);imageY.at<int>(i, j) = abs(gradY);if (gradX == 0){gradX = 0.000000000001;}theta.at<int>(i, j) = atan(gradY / gradX) * 57.3;theta.at<int>(i, j) = (theta.at<int>(i, j) + 360) % 360;gradXY.at<int>(i, j) = sqrt(gradX * gradX + gradY * gradY);//XY[i*stepXY + j*(stepXY / step)] = sqrt(gradX*gradX + gradY*gradY);}}convertScaleAbs(imageX, imageX);convertScaleAbs(imageY, imageY);convertScaleAbs(gradXY, gradXY);
}
这个不明显,所以我打算换个图像test
4、局部非极大值抑制
这里我们就要用到上面一步在sobel里面计算求得的x y 方向以及梯度方向的那些 东西了。
原理:
拿到当前点的梯度方向[0,360],判断其在那个区域,计算梯度方向(一个方向,两个值)在不同权重下(w=dy/dx)的灰度值t1 t2, 最后判断当前点灰度值current 和t1 t2的大小比较,如果当前值current小于t1 t2中的任何一个那么,当前的点就不会是边缘的候选点,current=0;
下面我们看一下梯度的分布:
[0-45] U[180-225]
[45-90] U[225-270]
[90-135] U[270-315]
[135-180] U[315-360]
code:
/// <summary>
/// 局部极大值抑制 ,计算八领域 沿着该点梯度方向,比较前后两个点的幅值大小,若该点大于前后两点,则保留,若该点小于前后两点任意一点,则置为0;
/// </summary>
/// <param name="imageInput"> 输入的图像</param>
/// <param name="imageOutput"></param>
/// <param name="theta"></param>
/// <param name="imageX"> </param>
/// <param name="imageY"></param>
void NonLocalMaxValue(const Mat imageInput, Mat& imageOutput, const Mat& theta, const Mat& imageX, const Mat& imageY)
{if (!imageInput.data || imageInput.channels() != 1){return;}imageOutput = imageInput.clone();int rows = imageOutput.rows;int cols = imageOutput.cols;int g00, g01, g02, g10, g11, g12, g20, g21, g22;int g1, g2, g3, g4;for (size_t i = 1; i < rows-1; i++){for (size_t j = 1; j < cols-1; j++){// 第一行g00 = imageOutput.at<uchar>(i - 1, j - 1);g01 = imageOutput.at<uchar>(i - 1, j);g02 = imageOutput.at<uchar>(i - 1, j+1);// 第二行g10 = imageOutput.at<uchar>(i , j - 1);g11 = imageOutput.at<uchar>(i , j);g12 = imageOutput.at<uchar>(i, j + 1);// 第三行g20 = imageOutput.at<uchar>(i+1, j - 1);g21 = imageOutput.at<uchar>(i+1, j);g22 = imageOutput.at<uchar>(i+1, j + 1);// 当前点的梯度方向 int direction = theta.at<int>(i, j);g1 = 0; g2 = 0;g3 = 0;g4 = 0;// 保存亚像素点插值得到的灰度值 double t1 = 0;double t2 = 0;// 计算权重 double w = fabs((double)imageY.at<uchar>(i,j) / (double)imageX.at<uchar>(i, j));if (w==0){w = 0.0000001;}if (w>1){w = 1 / w;}// g00 g01 g02// g10 g11 g12// g20 g21 g22// ================================if ((0 <= direction && direction < 45) || 180 <= direction && direction < 225){t1 = g10 * (1 - w) + g20 * (w);t2 = g02 * (w)+g12 * (1 - w);}if ((45 <= direction && direction < 90) || 225 <= direction && direction < 270){t1 = g01 * (1 - w) + g02 * (w);t2 = g20 * (w)+g21 * (1 - w);}if ((90 <= direction && direction < 135) || 270 <= direction && direction < 315){t1 = g00 * (w)+g01 * (1 - w);t2 = g21 * (1 - w) + g22 * (w);}if ((135 <= direction && direction < 180) || 315 <= direction && direction < 360){t1 = g00 * (w)+g10 * (1 - w);t2 = g12 * (1 - w) + g22 * (w);}if (imageInput.at<uchar>(i,j)<t1 || imageInput.at<uchar>(i, j) < t2){imageOutput.at<uchar>(i, j) = 0;}}}}
5、 双阈值连接处理
双阈值处理
给定一个高阈值high 一个低阈值low, low*[1.5,2]=high 这个是给定规则
判断条件就是
当前current<low ,那么current=0
low<current<hight current 不处理
current>hight current=255
/// <summary>
/// 双阈值原理:
/// 制定一个低阈值 L 一个 高阈值 H,一般取H为整体图像灰度分布的 7成 并且H为1.5-2L
/// 灰度值<L gray=0, gray>H gray=255;
/// </summary>
/// <param name="imageIn"></param>
/// <param name="low"></param>
/// <param name="hight"></param>
void DoubleThreshold(Mat& imageIn, const double low, const double hight)
{if (!imageIn.data || imageIn.channels() != 1){return;}int rows = imageIn.rows;int cols = imageIn.cols;double gray;for (size_t i = 0; i < rows ; i++){for (size_t j = 0; j < cols ; j++){gray = imageIn.at<uchar>(i, j);gray = gray > hight ? (255) : (gray < low) ? (0) : gray;imageIn.at<uchar>(i, j) = gray;}}
}
将边缘链接起来
经过上每一步的双阈值处理,我们基本上已经拿到了边缘点的候选点,下一步就是将这些边缘点联合起来,组成一个边缘轮廓
这里我们再次使用双阈值的机制 low 和 hight 和当前点的灰度值current
规则如下: current 的8邻域的灰度值 M介于【low,hight】中,有,可能是边缘点,这个领域的点M=255 ,并且回退 , 如果领域类没有 说明这个点是一个孤立的点 不做处理,
最后判断图像中所有的点,不是255 就是0 ,生成边缘
void DoubleThresholdLink(Mat& imageInput, double lowTh, double highTh)
{if (!imageInput.data || imageInput.channels() != 1){return;}int rows = imageInput.rows;int cols = imageInput.cols;double gray;for (size_t i = 1; i < rows-1; i++){for (size_t j = 1; j < cols-1; j++){gray = imageInput.at<uchar>(i, j);if (gray==255){continue;}bool reback = false;// 寻找8领域中是否有介于low 和hight 的值 for (size_t k = -1; k < 2; k++){for (size_t l= -1; l < 2; l++){if (k == 0 && l == 0) //当前点 {continue;}double t = imageInput.at<uchar>(i + k, j + l);if (t>= lowTh&& t<highTh){imageInput.at<uchar>(i + k, j + l) = 255;reback = true;}}}// 回退 if (reback){if (i > 1) i--;if (j > 2)j -= 2;}}}// 最后调整 for (int i = 0; i < rows; i++){for (int j = 0; j < cols; j++){if (imageInput.at<uchar>(i, j) != 255){imageInput.at<uchar>(i, j) = 0;}}}}
opencv 库结果:
还是用opencv库吧,结果比这个好多了
三、halcon 效果对比
halcon的效果更好
code
read_image (Grayimage, 'C:/Users/alber/Desktop/opencv_images/1/grayImage.jpg')
edges_sub_pix (Grayimage, Edges, 'canny', 1, 20, 40)