【自定义类型:结构体】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

1. 结构体类型的声明

1.1 结构体的概念

1.2 结构的声明

​编辑

1.3 特殊的声明

1.4 结构的自引用

2. 结构体变量的创建和初始化

3. 结构成员访问操作符

4. 结构体内存对齐

4.1 对齐规则

4.2 为什么存在内存对齐?

4.3 修改默认对齐数

5. 结构体传参

6. 结构体实现位段

6.1 什么是位段

6.2 位段的内存分配

6.3 位段的跨平台问题

6.4 位段的应用

6.5 位段使用的注意事项

总结


前言

世上有两种耀眼的光芒,一种是正在升起的太阳,一种是正在努力学习编程的你!一个爱学编程的人。各位看官,我衷心的希望这篇博客能对你们有所帮助,同时也希望各位看官能对我的文章给与点评,希望我们能够携手共同促进进步,在编程的道路上越走越远!

像回顾上一篇博客的请点击这里数据在内存中的存储


提示:以下是本篇文章正文内容,下面案例可供参考

1. 结构体类型的声明

1.1 结构体的概念

结构是一些值的集合,这些值称为成员变量结构的每个成员可以是不同类型的变量。

1.2 结构的声明

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。(匿名结构体类型

警告:

编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。

匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

比如,定义一个链表的节点:

struct Node
{int data;struct Node next;
};

上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?

仔细分析,其实是不行的,因为一个结构体中再包含一个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。

正确的自引用方式:

struct Node
{int data;struct Node* next;
};

在结构体自引用使用的过程中,夹杂了typedef对匿名结构体类型重命名,也容易引入问题,看看下面的代码,可行吗?

typedef struct
{int data;Node* next;
}Node;

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。

解决方案如下:定义结构体不要使用匿名结构体了

typedef struct Node
{int data;struct Node* next;
}Node;

2. 结构体变量的创建和初始化

有了结构体类型,那如何定义变量,其实很简单,结构体变量的初始化使用{}.

struct Point
{int x;int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu //类型声明
{char name[15];//名字int age; //年龄
};
struct Stu s = {"zhangsan", 20};//初始化struct Node
{int data;struct Point p;struct Node* next; 
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

指示器初始化方式(C99),这种方式允许不是按照成员顺序初始化。

struct Stu
{char name[15];int age; 
};
struct Stu s = {.age=20, .name="zhangsan"};//初始化

3. 结构成员访问操作符

结构成员访问操作符有两个一个是 . ,⼀个是 -> .

形式如下:

结构体变量.成员变量名

结构体指针—>成员变量名

举例:

#include <stdio.h>
#include <string.h>
struct Stu
{char name[15];//名字int age; //年龄
};
void print_stu(struct Stu s)
{printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{strcpy(ps->name, "李四");ps->age = 28;
}
int main()
{struct Stu s = { "张三", 20 };print_stu(s);set_stu(&s);print_stu(s);return 0;
}

4. 结构体内存对齐

我们已经掌握了结构体的基本使用了。

现在我们深入讨论一个问题:计算结构体的大小。

这也是一个特别热门的考点: 结构体内存对齐

4.1 对齐规则

首先得掌握结构体的对齐规则:

1. 结构体的第一个成员对齐到相对结构体变量起始位置偏移量为0的地址处

2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处

对齐数 = 编译器默认的一个对齐数 与 该成员变量大小的较小值

- VS中默认的值为8

- Linux中没有默认对齐数,对齐数就是成员自身的大小

3. 结构体总大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍

4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

如何确定我们的理解是正确的呢?
offsetof(结构体类型,成员名); - 宏 - 用来计算结构体成员,相较于起始位置的偏移量
需要包含头文件#include <stddef.h>

4.2 为什么存在内存对齐?

大部分的参考资料都是这样说的:

1. 平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。假设一个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起

//例如:
struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;};

S1 和 S2 类型的成员一模一样,但是 S1 和 S2 所占空间的大小有了一写区别。

4.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

5. 结构体传参

上面的 printf1 和 printf2 函数哪个好些?

答案是:首选printf2函数。

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:

结构体传参的时候,要传结构体的地址。

6. 结构体实现位段

结构体讲完就得讲讲结构体实现 位段 的能力。

6.1 什么是位段

位段的声明和结构是类似的,有两个不同:

1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以选择其他类型。

2. 位段的成员名后边有一个冒号和一个数字。

代码演示:

6.2 位段的内存分配

1. 位段的成员可以是 int 、unsigned int 、signed int 或者是 char 等类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

我们调试看一下是不是按照上面的方式存储的?

6.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(比如:int类型在16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在

6.4 位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的。

6.5 位段使用的注意事项

位段的几个成员共有同一个字节,这样有些成员的起始位置并不是这个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。

所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段的成员。


总结

好了,本篇博客到这里就结束了,如果有更好的观点,请及时留言,我会认真观看并学习。
不积硅步,无以至千里;不积小流,无以成江海。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/187886.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

osg点云加载与渲染

目录 效果 laslib 关键代码 完整代码 效果 las点云读取使用了laslib这个库。 laslib 关键代码 {// 这里演示读取一个 .txt 点云文件const char* lasfile path.c_str();std::ifstream ifs;ifs.open(lasfile, std::ios::in | std::ios::binary);liblas::ReaderFactory f;libl…

Win11 Edge浏览器进入朔日考试系统(无纸化测评系统)的方法

Win11 Edge浏览器进入朔日考试系统&#xff08;无纸化测评系统&#xff09;的方法 笔记本型号&#xff1a;联想 使用浏览器&#xff1a;edge浏览器 操作系统&#xff1a;Windows11 网址&#xff1a;http://172.31.0.139/WZHEDU/ 注意:使用此方法打开edge浏览器会频繁出现弹窗&a…

如何将BMP图片批量转为PNG透明图片,并去掉BMP黑色背景

将BMP图片批量转为PNG透明图片&#xff0c;并去掉BMP黑色背景&#xff0c;这里推荐一款软件bmp2png&#xff0c;关键是免费的。截图如下&#xff1a; 这个小软件不仅可以将bmp图片批量转为png图片&#xff0c;而且还增加了压缩功能&#xff0c;导出png图片时压缩导出图片&#…

Spring Boot 集成 ElasticSearch

1 加入依赖 首先创建一个项目&#xff0c;在项目中加入 ES 相关依赖&#xff0c;具体依赖如下所示&#xff1a; <dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>7.1.0</version&g…

巨好用又实用的18款3dMax插件!

3dMax是一款功能强大的 3D 软件&#xff0c;具有建模、动画、粒子动力学等许多强大功能。但并不是每个人都能有效地利用max的每一个功能&#xff0c;例如&#xff0c;很多人发现3dmax粒子流太难使用&#xff0c;3ds max蒙皮工具也是如此。 这让我们一些专业的开发公司或个人和…

前端如何结合mock模拟假数据

由于某人不想写后端接口&#xff0c;不想用真数据对接vue-element-admin框架&#xff0c;用以前的接口&#xff0c;改token有点点麻烦&#xff0c;所以咱试试mock.js

计算机网络期末复习-Part3

1、rdt1.0&#xff0c;rdt2.0&#xff0c;rdt3.0的底层信道模型 RDT 1.0: 完全可靠的底层信道&#xff0c;没有比特差错&#xff0c;也没有分组丢失。 RDT 2.0: 具有比特差错的底层信道&#xff0c;有比特差错&#xff0c;但没有分组丢失。 RDT 3.0: 具有差错和丢包的底层信道…

安哥拉市场开发攻略,收藏一篇就够了

安哥拉是非洲南部的一个国家&#xff0c;中国是安哥拉最大的贸易伙伴&#xff0c;安哥拉是中国在非洲的第二大贸易伙伴&#xff0c;中国人在安哥拉也是非常受欢迎的&#xff0c;虽然安哥拉经济比较落后&#xff0c;但是市场潜力还是非常不错的。今天就来给大家分享一下安哥拉的…

【开源分享】国内可用的免费安卓GPT语音助手 - 可音量键唤起,可联网

写在前面&#xff1a;这是一个我写的开源GPT语音助手&#xff0c;不收钱&#xff0c;只求Star! 简要介绍 这是一个基于ChatGPT的安卓端语音助手&#xff0c;允许用户通过手机音量键从任意界面唤起并直接进行语音交流&#xff0c;用最快捷的方式询问并获取回复 使用效果 一、基…

(动手学习深度学习)第13章 计算机视觉---图像增广与微调

13.1 图像增广 总结 数据增广通过变形数据来获取多样性从而使得模型泛化性能更好常见图片增广包裹翻转、切割、变色。 图像增广代码实现

Redis实现分布式锁

文章目录 前言一、概述为什么使用分布式锁基本原理分布式锁应该具备哪些条件常见的三种分布式锁 二、基于Redis实现分布式锁误删锁问题原子性问题最终代码实现 总结 前言 Redis实现简单分布式锁。 一、概述 为什么使用分布式锁 在多线程环境中&#xff0c;如果多个线程同时访…

确定性 vs 非确定性:GPT 时代的新编程范式

分享嘉宾 | 王咏刚 责编 | 梦依丹 出品 | 《新程序员》编辑部 在 ChatGPT 所引爆的新一轮编程革命中&#xff0c;自然语言取代编程语言&#xff0c;在只需编写提示词/拍照就能出程序的时代&#xff0c;未来程序员真的会被简化为提示词的编写员吗&#xff1f;通过提示词操纵 …

10-Docker-分布式存储算法

01-哈希取余算法分区 哈希取余分区&#xff08;Hash Modulus Partitioning&#xff09;是一种在分布式计算和数据存储中常用的分区策略&#xff0c;其目的是将数据或计算任务分配到多个节点或服务器上&#xff0c;以实现负载均衡和提高性能。这种分区策略的核心思想是使用哈希…

HCIA-hybrid经典小实验

hybrid经典小实验 实验拓扑配置实现SW1SW2 配置验证PC1-PC3 不能通信PC1-PC2 正常通信其他自行测试 实验拓扑 配置实现 SW1 sysname SW1 # undo info-center enable # vlan batch 10 20 30 # interface Ethernet0/0/1 //接口发送该vlan-id的数据帧时&#xff0c;不剥离帧中的…

多级缓存之实现多级缓存

多级缓存的实现离不开Nginx编程&#xff0c;而Nginx编程又离不开OpenResty。 1. OpenResty快速入门 我们希望达到的多级缓存架构如图&#xff1a; 其中&#xff1a; windows上的nginx用来做反向代理服务&#xff0c;将前端的查询商品的ajax请求代理到OpenResty集群 OpenRest…

容器网络-Underlay和Overlay

一、主机网络 前面讲了容器内部网络&#xff0c;但是容器最终是要部署在主机上&#xff0c;跨主机间的网络访问又是怎么样的&#xff0c;跨主机网络主要有两种方案。 二、 Underlay 使用现有底层网络&#xff0c;为每一个容器配置可路由的网络IP。也就是说容器网络和主机网络…

三掌柜第2期赠书活动:《计算机考研精炼1000题》

引言 各位朋友大家好&#xff0c;我是三掌柜。今天&#xff0c;三掌柜赠书第2期启动&#xff0c;本次为大家精选了《计算机考研精炼1000题》这本书。关于这本书的内容&#xff0c;非常丰富&#xff0c;涵盖计算机考研的高频知识内容&#xff0c;不管是正在备考&#xff0c;还是…

Python Opencv实践 - 车牌定位(纯练手,存在失败场景,可以继续优化)

使用传统的计算机视觉方法定位图像中的车牌&#xff0c;参考了部分网上的文章&#xff0c;实际定位效果对于我目前使用的网上的图片来说还可以。实测发现对于车身本身是蓝色、或是车牌本身上方有明显边缘的情况这类图片定位效果较差。纯练手项目&#xff0c;仅供参考。代码中im…

科研检测机构服务预约小程序的效果如何

科研检测机构涵盖的业务比较广&#xff0c;比如水质检测、农产品检测、食品检测等&#xff0c;对相关从业者来说&#xff0c;可能需要频繁使用这些业务&#xff0c;或者个人偶尔需要一些东西检测。 对用户和检测机构来说&#xff0c;由于行业的特殊性&#xff0c;在实际发展中…

keepalived+Nginx+邮件

实验场景&#xff1a; 我使用keepalived保证nginx的高可用&#xff0c;我想知道什么时候ip发生漂移&#xff0c;可以让ip发生漂移的时候 我的邮箱收到消息. 如果对keepalived不了解&#xff0c;这有详细解释&#xff1a;keepalived与nginx与MySQL-CSDN博客https://blog.csdn.ne…