【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六)

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一)
作者: 计算机魔术师
版本: 1.0 ( 2023.8.27 )

摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

@toc

置信区域概念

置信区域(Confidence Interval)是统计学中的一个概念,用于估计总体参数的取值范围。它是对样本统计量的点估计结果进行区间估计的一种方法。

在统计推断中,我们通常只能通过抽样得到一部分数据,然后利用这部分数据对总体参数进行估计。然而,由于抽样误差等因素的存在,样本估计值往往不会完全等于总体参数的真实值。因此,为了提供关于总体参数的估计范围,我们使用置信区域来表示参数可能的取值范围

置信区域由估计值的下限和上限组成,表示我们对总体参数的估计具有一定的置信水平(confidence level)。常见的置信水平包括95%、90%等。例如,一个95%的置信区域表示,在大量重复抽样的情况下,有95%的置信区间会包含总体参数的真实值。

置信区域的计算通常依赖于抽样分布的性质和统计理论。常见的计算方法包括基于正态分布的方法、基于t分布的方法等。计算得到的置信区域可以帮助我们对估计结果的可靠性进行评估,并提供了关于总体参数的不确定性信息。

需要注意的是,置信区域并不直接提供关于总体参数真实值的准确区间,而是提供了一个统计上的估计范围。置信区域的宽度与置信水平有关,较宽的置信区域表示对估计结果的不确定性较大,较窄的置信区域表示对估计结果的不确定性较小。

独立同分布概念

独立同分布(independent and identically distributed,简称i.i.d.)是概率统计学中的一个重要概念。

独立(independent)指的是随机变量之间的关系,即一个随机变量的取值不受其他随机变量的取值影响。换句话说,给定一个随机变量的取值,不能提供有关其他随机变量取值的任何信息。例如,抛一枚硬币两次,第一次出现正面和第二次出现正面这两个事件是独立的,因为第一次出现正面的结果不会影响第二次出现正面的概率。

同分布(identically distributed)指的是多个随机变量具有相同的概率分布。换句话说,多个随机变量的取值遵循相同的概率规律。例如,从同一批产品中随机选取多个产品的重量,这些随机变量的取值遵循相同的概率分布。

因此,独立同分布(i.i.d.)的含义是指多个随机变量之间相互独立且具有相同的概率分布。在统计学和机器学习中,独立同分布假设常常被用来简化问题和建立模型。它是许多概率模型和统计推断方法的基础假设之一,使得问题可以更容易地建模和求解。

P-value假设检验

在统计学中,p-value中的"P"代表"probability",即概率。p-value表示观察到的样本数据或更极端情况出现的概率。

在假设检验中,p-value是用于衡量观察到的样本数据对于原假设的支持程度的指标。它表示在原假设为真的情况下,观察到的样本数据或更极端情况出现的概率。

假设检验的一般步骤如下:

  1. 建立原假设(H0)和备择假设(H1)。
  2. 选择适当的统计量,根据样本数据计算统计量的观察值。
  3. 基于原假设,确定统计量在原假设下的分布。
  4. 计算p-value,即在原假设为真的情况下,观察到的统计量值或更极端情况出现的概率。
  5. 根据p-value与事先设定的显著性水平进行比较。
    • 如果p-value小于显著性水平(通常为0.05),则拒绝原假设,认为观察到的数据提供了足够的证据支持备择假设。
    • 如果p-value大于等于显著性水平,则无法拒绝原假设,认为观察到的数据不足以提供足够的证据支持备择假设。

p-value的计算方法与具体的假设检验方法和统计量有关。对于一些常见的假设检验方法,例如t检验和F检验,p-value可以通过查表或使用概率分布函数来计算。对于更复杂的假设检验方法,可能需要使用模拟方法(如蒙特卡洛模拟)或基于抽样分布的方法来估计p-value。

需要注意的是,p-value并不提供关于备择假设的真实性或效应大小的信息。它仅仅是一种衡量观察到数据与原假设的一致性的指标。因此,在解释p-value时,应该谨慎考虑其他因素,如实际背景知识、样本大小和效应大小等。

显著性水平(0.05)

显著性水平通常被设定为0.05(或5%)的原因是出于统计学上的传统和惯例。在假设检验中,显著性水平表示在原假设为真的情况下,我们拒绝原假设的错误概率。换句话说,它是我们犯第一类错误(拒绝一个实际上为真的假设)的概率。

将显著性水平设置为0.05有以下几个原因:

  1. 常用的标准:0.05的显著性水平是在许多学科和领域中被广泛接受的标准,包括经济学、社会科学、医学研究等。这种一致性有助于结果的可比性和解释的一致性。

  2. 平衡类型I和类型II错误:在假设检验中,存在两种类型的错误,即类型I错误(拒绝一个实际上为真的假设)和类型II错误(接受一个实际上为假的假设)。将显著性水平设置为0.05可以在一定程度上平衡这两种错误的风险。

  3. 统计学的权衡:选择显著性水平时需要进行统计学权衡。较低的显著性水平(例如0.01)可以降低犯类型I错误的概率,但可能增加类型II错误的概率。相反,较高的显著性水平(例如0.10)可以增加类型I错误的概率,但可能降低类型II错误的概率。0.05的显著性水平在权衡这两种错误之间提供了一种较为平衡的选择。

需要注意的是,显著性水平的选择并不是绝对的,而是依赖于具体的研究领域、问题的重要性以及研究者自身的偏好。在某些情况下,可能会选择更为保守或更为宽松的显著性水平。

将显著性水平设置为0.05是出于统计学的传统和平衡类型I和类型II错误的考虑。然而,根据具体的研究需求和背景,研究者可以根据自己的判断和需要选择不同的显著性水平。
在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193029.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

毫米波雷达模块的目标检测与跟踪

毫米波雷达技术在目标检测与跟踪方面具有独特的优势,其高精度、不受光照影响等特点使其在汽车、军事、工业等领域广泛应用。本文深入探讨毫米波雷达模块在目标检测与跟踪方面的研究现状、关键技术以及未来发展方向。 随着科技的不断进步,毫米波雷达技术在…

短路语法 [SUCTF 2019]EasySQL1

打开题目 输入字符的时候啥也不回显。只有输入数字的时候页面有回显 但是当我们输入union,from,sleep,where,order等,页面回显nonono,很明显过滤了这些关键词 最开始我的思路是打算尝试双写绕过 1;ununion…

高效使用 PyMongo 进行 MongoDB 查询和插入操作

插入到集合中: 要将记录(在MongoDB中称为文档)插入到集合中,使用insert_one()方法。insert_one()方法的第一个参数是一个包含文档中每个字段的名称和值的字典。 import pymongomyclient pymongo.MongoClient("mongodb://l…

华为ensp:vrrp双机热备负载均衡

现在接口ip都已经配置完了,直接去配置vrrp r1上192.168.1.100 作为主 192.168.2.100作为副 r2上192.168.1.199 作为副 192.168.2.100作为主 这样就实现了负载均衡,如果两个都正常运行时,r1作为1.1的网关,r2作为2.1网关…

数据结构第三课 -----线性表之双向链表

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…

Radiology 谈人工智能在放射学领域的10个预测方向 [文献阅读]

人工智能(AI)和信息学正在改变放射学。十年前,没有哪个专家会预测到今天放射人工智能行业的蓬勃发展,100多家人工智能公司和近400种放射人工智能算法得到了美国食品和药物管理局(FDA)的批准。 不到一年前,即使是最精明的预言家也不会相信这些…

【华为HCIP | 华为数通工程师】IPV4与IPV6 高频题(2)

个人名片: 🐼作者简介:一名大三在校生,喜欢AI编程🎋 🐻‍❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️…

移动机器人路径规划(二)--- 图搜索基础,Dijkstra,A*,JPS

目录 1 图搜索基础 1.1 机器人规划的配置空间 Configuration Space 1.2 图搜索算法的基本概念 1.3 启发式的搜索算法 Heuristic search 2 A* Dijkstra算法 2.1 Dijkstra算法 2.2 A*&&Weighted A*算法 2.3 A* 算法的工程实践中的应用 3 JPS 1 图搜索基础 1.1…

原生JS实现视频截图

视频截图效果预览 利用Canvas进行截图 要用原生js实现视频截图,可以利用canvas的绘图功能 ctx.drawImage,只需要获取到视频标签,就可以通过drawImage把视频当前帧图像绘制在canvas画布上。 const video document.querySelector(video) con…

谷粒商城项目-环境配置

安装vegrant 2.2.18 注意vritual box(6.1.30)和vegrant版本兼容 初始化和创建虚拟机 vagrant init centos/7 vagrant up连接虚拟机 vegrant ssh解决vagrant up速度过慢问题 https://app.vagrantup.com/centos/boxes/7/versions/2004.01直接下载对应镜像…

8年经验之谈 —— 记一次接口压力测试与性能调优!

经验总结 1. 如果总的CPU占用率偏高,且基本都被业务线程占用时,CPU占用率过高的原因跟JVM参数大小没有直接关系,而跟具体的业务逻辑有关。 2. 当设置JVM堆内存偏小时,GC频繁会导致业务线程停顿增多,TPS下降&#xff…

Actipro Software WPF Controls 23.1.3

Actipro Software WPF Controls v23.1.3 Actipro Software 为 Microsoft 提供软件组件和 .NET 平台。它位于克利夫兰,重点主要是提供高质量的用户界面软件组件以及客户的过程,以便他们有能力信任,以便为用户应用程序添加强大的功能。自 .NET…

【算法与数据结构】491、LeetCode递增子序列

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:本题和【算法与数据结构】78、90、LeetCode子集I, II中90.子集II问题有些类似,…

基于单片机微波炉加热箱系统设计

**单片机设计介绍, 基于单片机微波炉加热箱系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的微波炉加热箱系统是一种智能化的厨房电器设备,利用单片机控制技术实现自动加热和定时等功能…

Hadoop的概述

1、Hadoop的发展史: Google首先发布三篇文章:GFS(Google File System)、Mapreduce(计算引擎)、Bigtable ,随着时间的推移: hadoop1.0与2.0 的区别是在2.0的版本中出现了yarn,主要是负责资源的调…

解决Qt5.13.0无MySQL驱动问题

一、前言 由于Qt5.12.3是最后提供mysql数据库插件的版本,往后的版本需要自行编译对应的mysql数据库插件,官方安装包不再提供。使用高版本的Qt就需要自行编译mysql驱动。 若没有编译在QT中调用Qsqldatabase库连接mysql时,提示出现如下问题&a…

基于51单片机PCF8591数字电压表LCD1602液晶显示设计( proteus仿真+程序+设计报告+讲解视频)

基于 51单片机PCF8591数字电压表LCD1602液晶设计 ( proteus仿真程序设计报告讲解视频) 仿真图proteus7.8及以上 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0060 51单片机PCF8591数字电压表LCD1602液晶设计 1.主要功…

Using Definition View 使用定义视图

You use Definition view to create definitions within a defined hierarchical structure, in which nodes represent the definitions. A node is the visual representation of a section, step, or action that you can select, collapse,modify, and so on. 您可以使用“…

kubernetes集群编排——istio

官网:https://istio.io/latest/zh/about/service-mesh/ 部署 [rootk8s2 ~]# tar zxf istio-1.19.3-linux-amd64.tar.gz [rootk8s2 ~]# cd istio-1.19.3/[rootk8s2 istio-1.19.3]# export PATH$PWD/bin:$PATH demo专为测试准备的功能集合 [rootk8s2 istio-1.19.3]# i…

【Java】若依的使用代码生成及字典的使用

一、导言 1、介绍 若依管理系统是一款基于Java语言开发的开源管理系统。它采用了Spring Boot框架,使得开发更加快速和高效。同时,它还集成了MyBatis Plus,进一步简化了数据库操作。若依管理系统的界面简洁美观,且支持多语言&#…