向量数据库的分类概况

保存和检索矢量数据的五种方法:

  1. 像 Pinecone 这样的纯矢量数据库
  2. 全文搜索数据库,例如 ElasticSearch
  3. 矢量库,如 Faiss、Annoy 和 Hnswlib
  4. 支持矢量的NoSQL 数据库,例如 MongoDB、Cosmos DB 和 Cassandra
  5. 支持矢量的SQL 数据库,例如 SingleStoreDB 或 PostgreSQL
    1.纯矢量数据库
    纯向量数据库专门用于存储和检索向量。示例包括 Chroma、LanceDB、Marqo、Milvus/Zilliz、Pinecone、Qdrant、Vald、Vespa、Weaviate 等。

    在纯矢量数据库中,数据是根据对象或数据点的矢量表示来组织和索引的。这些向量可以是各种类型数据的数值表示,包括图像、文本文档、音频文件或任何其他形式的结构化或非结构化数据。

    纯载体数据库的优点

    利用索引技术进行高效的相似性搜索
    大型数据集和高查询工作负载的可扩展性
    支持高维数据
    支持基于 HTTP 和 JSON 的 API
    对向量运算的本机支持,包括加法、减法、点积、余弦相似度

    纯载体数据库的缺点

    仅矢量:纯矢量数据库可以存储矢量和一些元数据,但仅此而已。对于大多数企业人工智能用例,您可能需要包括实体、属性和层次结构(图形)、位置(地理空间)等的描述等数据。
    有限或没有 SQL 支持:纯向量数据库通常使用自己的查询语言,这使得很难对向量和相关信息运行传统分析,或者将向量和其他数据类型结合起来。
    没有完整的 CRUD。纯向量数据库并不是真正为创建、更新和删除操作而设计的。对于读取操作,数据必须首先进行矢量化和索引以进行持久化和检索。这些数据库专注于提取矢量数据、对其进行索引以进行有效的相似性搜索以及基于矢量相似性查询最近邻居。
    建立索引非常耗时。索引矢量数据计算量大、成本高且耗时。这使得很难将新数据用于生成人工智能应用程序。

    被迫权衡。根据所使用的索引技术,矢量数据库要求客户在准确性、效率和存储之间进行权衡。例如,Pinecone 的 IMI 索引(反向多重索引,ANN 的一种变体)会产生存储开销,并且计算量很大。它主要针对静态或半静态数据集而设计,如果频繁添加、修改或删除向量,则可能会受到挑战。Milvus 使用称为“产品量化”和“分层可导航小世界”(HNSW) 的索引,这些索引是权衡搜索准确性和效率的近似技术。此外,其索引需要配置各种参数,使用不正确的参数选择可能会影响搜索结果的质量或导致效率低下。

    企业特征值得怀疑。许多矢量数据库在基本功能上严重落后,包括 ACID 事务、灾难恢复、RBAC、元数据过滤、数据库可管理性、可观察性等。这可能会导致严重的业务问题 - 类似于丢失所有数据的客户。

    对于许多客户来说,矢量数据库的局限性将归结为性价比。鉴于矢量运算的计算量大,OSS矢量数据库或矢量库成为特别大规模应用程序的可行替代方案。

    2. 全文检索数据库

    此类别包括 Elastic/Lucene、OpenSearch 和 Solr 等数据库。

    优点

    --高可扩展性和性能,特别是对于非结构化文本文档
    --丰富的文本检索功能,例如内置外语支持、可自定义分词器、词干分析器、停止列表和 N 元语法
    --基于开源库(Apache Lucene)
    --大型集成生态系统,包括向量库

    矢量数据全文检索数据库的局限性

    --未针对向量搜索或相似性匹配进行优化
    --专为全文搜索而不是语义搜索而设计,因此基于其构建的应用程序不会具有检索增强生成 (RAG) 和其他用例的完整上下文。为了实现语义搜索功能,这些数据库需要使用其他工具以及大量的自定义评分和相关性模型进行扩充。
    --其他数据格式(图像、音频、视频)的应用有限
    --缺乏 GPU 支持

    3. 向量库

    对于许多开发人员来说,Faiss、Annoy 和 Hnswlib 等开源矢量库是一个不错的起点。

    Faiss是一个用于密集向量的相似性搜索和聚类的库。Annoy(Approximate Nearest Neighbors Oh Yeah)是一个用于 ANN 搜索的轻量级库。Hnswlib是一个实现 ANN 搜索的 HNSW 算法的库。

    开源向量库的优点

    --快速最近邻搜索
    --专为高维而打造
    --支持面向 ANN 的索引结构,包括倒排文件、乘积量化和随机投影
    --支持推荐系统、图像搜索和 NLP 的用例
    --SIMD(单指令、多数据)和 GPU 支持可加速矢量相似性搜索操作

    开源向量库的局限性

    --繁琐的维护和集成
    --与精确方法相比,牺牲搜索精度
    --自带基础设施矢量库需要大量内存和计算资源,它们需要您构建和维护复杂的基础设施,以便为应用程序需求提供足够的 CPU、GPU 和内存资源。
    --对元数据过滤、SQL、CRUD 操作、事务、高可用性、灾难恢复以及备份和恢复的支持有限或不支持

         4.支持向量的NoSQL数据库

该类别包括:

  1. NoSQL 数据库,例如 MongoDB、Cassandra/DataStax Astra 和 CosmosDB。
  2. 键值数据库,例如 Redis
  3. 其他特殊用途数据库,如 Neo4j(

几乎所有这些 NoSQL 数据库最近才通过添加矢量搜索扩展而变得支持矢量。

优点

  • 对于其特定的数据模型,NoSQL 数据库提供高性能和规模。Neo4j(图形数据库)可以与社交网络或知识图的法学硕士结合使用。具有矢量功能的时间序列数据库(例如 kdb)也许能够将矢量数据与金融市场数据结合起来。

局限性

  • NoSQL 数据库的向量功能是基本的/新生的/未经测试的。许多 NoSQL 数据库今年才添加了向量支持。五月,Cassandra 宣布计划添加矢量搜索。4 月份,Rockset 宣布支持基本向量搜索,Azure Cosmos DB于 5 月份宣布支持 MongoDB vCore 的向量搜索。DataStax和MongoDB就在本月宣布了矢量搜索功能(均为预览版)!
  • NoSQL 数据库的矢量搜索性能差异很大,具体取决于支持的矢量函数、索引方法和硬件加速。
    5. 支持向量的 SQL 数据库
         该类别由一组非常小的数据库组成——SingleStoreDB、PostgreSQL 的 pgvector/Supabase Vector(测试版)、Clickhouse、Kinetica 和 Rockset。我们预计更多流行的数据库会出现在这个列表中,因为向已建立的数据库添加基本矢量功能并不是一件繁重的工作。事实上,矢量数据库 Chroma 是从 ClickHouse 中诞生的。
    更新:2023 年 9 月,Oracle 也宣布了矢量搜索功能。

    支持矢量的 SQL 数据库的优点

    --具有点积、余弦相似度、欧氏距离和曼哈顿距离等功能的幂向量搜索。
    --使用相似度分数查找 K 最近邻
    --多模型 SQL 数据库提供混合搜索,并且可以将向量与其他数据结合起来以获得更有意义的结果
    --大多数 SQL 数据库可以部署为服务,并在任何主要云上完全管理。

    SQL 数据库用于矢量数据处理的局限性

    --SQL 数据库是为结构化数据而设计的。生成式人工智能应用程序背后的语料库主要包含非结构化数据,例如图像、音频和文本。虽然关系数据库通常可以存储文本和 blob,但大多数数据库不会对这种非结构化数据进行矢量化以用于机器学习。
    --大多数 SQL 数据库尚未针对矢量搜索进行优化。关系数据库的索引和查询机制主要是为结构化数据设计的,而不是高维向量数据。虽然用于矢量数据处理的 SQL 数据库的性能可能并不出色,但支持矢量的 SQL 数据库可能会添加扩展或新功能来支持矢量搜索。例如,虽然 SingleStoreDB 支持精确的 k-NN 搜索,但我们打算添加 ANN 搜索来提高非常大、高维数据集的性能。
    --传统的 SQL 数据库无法横向扩展,因此其性能会随着数据的增长而下降。使用 SQL 数据库处理高维向量的大型数据集可能需要您进行额外的优化,例如对数据进行分区或采用专门的索引技术来保持高效的查询性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自学SLAM(8)《第四讲:相机模型与非线性优化》作业

前言 小编研究生的研究方向是视觉SLAM,目前在自学,本篇文章为初学高翔老师课的第四次作业。 文章目录 前言1.图像去畸变2.双目视差的使用3.矩阵微分4.高斯牛顿法的曲线拟合实验 1.图像去畸变 现实⽣活中的图像总存在畸变。原则上来说,针孔透…

Load-balanced-online-OJ-system 负载均衡的OJ系统项目

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 本项目Github地址 - Load-balanced-o…

在Linux中nacos集群模式部署

一、安装 配置nacos 在Linux中建立一个nacos文件夹 mkdir nacos 把下载的压缩包拉入刚才创建好的nacos文件中 解压 tar -zxvf nacos-server-1.4.1\.tar.gz 修改配置文件 进入nacos文件中的conf文件的cluster.conf.example 修改cluster.conf.example文件 vim cluster.conf.exa…

Spring6(一):入门案例

文章目录 1. 概述1.1 Spring简介1.2 Spring 的狭义和广义1.3 Spring Framework特点1.4 Spring模块组成 2 入门2.1 构建模块2.2 程序开发2.2.1 引入依赖2.2.2 创建java类2.2.3 创建配置文件2.2.4 创建测试类测试 2.3 程序分析2.4 启用Log4j2日志框架2.4.1 引入Log4j2依赖2.4.2 加…

使用pixy计算群体遗传学统计量

1 数据过滤 过滤参数:过滤掉次等位基因频率(minor allele frequency,MAF)低于0.05、哈达-温伯格平衡(Hardy– Weinberg equilibrium,HWE)对应的P值低于1e-10或杂合率(heterozygosit…

MacOS Ventura 13 优化配置(ARM架构新手向导)

一、系统配置 1、About My MacBook Pro 2、在当前标签打开新窗口 桌面上创建目录的文件夹,每次新打开一个目录,就会创建一个窗口,这就造成窗口太多,不太好查看和管理,我们可以改成在新标签处打开新目录。需要在&…

想买GPT4会员却只能排队?来看看背后的故事!

文章目录 🧐 为什么要进候选名单?🔍 究竟发生了什么?😮 IOS端还能买会员!🤔 网页端为啥不能订会员?第一点:防止黑卡消费第二点:当技术巨头遇上资源瓶颈&#…

OpenGL的学习之路-3

前面1、2介绍的都是glut编程 下面就进行opengl正是部分啦。 1.绘制点 #include <iostream> #include <GL/gl.h> #include <GL/glu.h> #include <GL/glut.h>void myMainWinDraw();int main(int argc,char** argv) {glutInit(&argc,argv);glutIni…

求组合数(笔记)

//组合数2&#xff0c;取值在1e5 //Cab a! / (a - b)! * b! #include<iostream> using namespace std; using ll long long; const ll N 1e4 9, mod 1e9 7; ll fact[N], infact[N];//阶乘&#xff0c;逆元阶乘ll qmi(ll a, ll k, ll p)//逆元模板 {ll res 1;while…

LeetCode - 142. 环形链表 II (C语言,快慢指针,配图)

如果你对快慢指针&#xff0c;环形链表有疑问&#xff0c;可以参考下面这篇文章&#xff0c;了解什么是环形链表后&#xff0c;再做这道题会非常简单&#xff0c;也更容易理解下面的图片公式等。 LeetCode - 141. 环形链表 &#xff08;C语言&#xff0c;快慢指针&#xff0c;…

Spring6(三):面向切面AOP

文章目录 4. 面向切面&#xff1a;AOP4.1 场景模拟4.1.1 声明接口4.1.2 创建实现类4.1.3 创建带日志功能的实现类4.1.4 提出问题 4.2 代理模式4.2.1 概念4.2.2 静态代理4.2.3 动态代理4.2.4 测试 4.3 AOP概念4.3.1 相关术语①横切关注点②通知&#xff08;增强&#xff09;③切…

2023年【北京市安全员-B证】试题及解析及北京市安全员-B证证考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 北京市安全员-B证试题及解析根据新北京市安全员-B证考试大纲要求&#xff0c;安全生产模拟考试一点通将北京市安全员-B证模拟考试试题进行汇编&#xff0c;组成一套北京市安全员-B证全真模拟考试试题&#xff0c;学员…

HDP集群Kafka开启SASLPLAINTEXT安全认证

hdp页面修改kafka配置 java代码连接kafka增加对应的认证信息 props.put("security.protocol","SASL_PLAINTEXT");props.put("sasl.mechanism","PLAIN");props.put("sasl.jaas.config","org.apache.kafka.common.securi…

CentOS to KeyarchOS 系统迁移体验

1. KOS(KeyarchOS)——云峦操作系统简介 KeyarchOS 即云峦操作系统(简称 KOS)是浪潮信息基于 Linux 内核、龙蜥等开源技术自主研发的一款服务器操作系统&#xff0c;支持x86、ARM 等主流架构处理器&#xff0c;广泛兼容传统 CentOS 生态产品和创新技术产品&#xff0c;可为用户…

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

毫米波雷达模块的目标检测与跟踪

毫米波雷达技术在目标检测与跟踪方面具有独特的优势&#xff0c;其高精度、不受光照影响等特点使其在汽车、军事、工业等领域广泛应用。本文深入探讨毫米波雷达模块在目标检测与跟踪方面的研究现状、关键技术以及未来发展方向。 随着科技的不断进步&#xff0c;毫米波雷达技术在…

短路语法 [SUCTF 2019]EasySQL1

打开题目 输入字符的时候啥也不回显。只有输入数字的时候页面有回显 但是当我们输入union&#xff0c;from&#xff0c;sleep&#xff0c;where&#xff0c;order等&#xff0c;页面回显nonono&#xff0c;很明显过滤了这些关键词 最开始我的思路是打算尝试双写绕过 1;ununion…

高效使用 PyMongo 进行 MongoDB 查询和插入操作

插入到集合中&#xff1a; 要将记录&#xff08;在MongoDB中称为文档&#xff09;插入到集合中&#xff0c;使用insert_one()方法。insert_one()方法的第一个参数是一个包含文档中每个字段的名称和值的字典。 import pymongomyclient pymongo.MongoClient("mongodb://l…

华为ensp:vrrp双机热备负载均衡

现在接口ip都已经配置完了&#xff0c;直接去配置vrrp r1上192.168.1.100 作为主 192.168.2.100作为副 r2上192.168.1.199 作为副 192.168.2.100作为主 这样就实现了负载均衡&#xff0c;如果两个都正常运行时&#xff0c;r1作为1.1的网关&#xff0c;r2作为2.1网关…

数据结构第三课 -----线性表之双向链表

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…