Redis面经

Redis使用场景

1、缓存:

  • 缓存三兄弟(穿透、击穿、雪崩) 、双写一致、持久化、数据过期策略,数据淘汰策略

2、分布式锁

  • setnx、redisson

3、消息队列
4、延迟队列

  • 何种数据类型(list、zset)

缓存三兄弟

缓存穿透

缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。

解决方案的话,我们通常都会用布隆过滤器来解决它
给不存在的值设置value为null,但是内存暂用多

你能介绍一下布隆过滤器吗

布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是redisson实现的布隆过滤器。

  • bitmap (位图):相当于是一个以 (bit)位为单位的数组,数组中每个单元只能存储二进制数0或1

它的底层主要是先去初始化一个比较大数组,里面存放的二进制0或1。在一开始都是0,当一个key来了之后经过3次hash计算,模于数组长度找到数据的下标然后把数组中原来的0改为1,这样的话,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。

当然是有缺点的,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%,其实这个误判是必然存在的,要不就得增加数组的长度,其实已经算是很划分了,5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。

缓存击穿

也叫做热点key的问题,缓存击穿的意思是对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。

缓存击穿的意思是对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。

解决方案有两种方式:

第一可以使用互斥锁:当缓存失效时,不立即去load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db的操作并回设缓存,否则重试get缓存的方法

第二种方案可以设置当前key逻辑过期,大概是思路如下:

①:在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间

②:当查询的时候,从redis取出数据后判断时间是否过期

③:如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新

当然两种方案各有利弊:

如果选择数据的强一致性,建议使用分布式锁的方案,性能上可能没那么高,锁需要等,也有可能产生死锁的问题

如果选择key的逻辑删除,则优先考虑的高可用性,性能比较高,但是数据同步这块做不到强一致。这个也是我简历上写的逻辑过期和互斥锁的方式提高可用性的方法

缓存雪崩

缓存雪崩意思是设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多key,击穿是某一个key缓存。还有就是缓存服务器宕机也是缓存雪崩的原因
解决方法:
1、给key的TTL添加随机事件
2、利用Redis集群提高服务的可用性
3、给缓存业务添加降级限流策略
4、给业务添加多级缓存

解决方案主要是可以将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

双写一致性

redis做为缓存,mysql的数据如何与redis进行同步

延迟双删

在这里插入图片描述
不管先删还是先修改都会出现脏数据

方案1-强一致性

我们当时是把抢券的库存存入到了缓存中,这个需要实时的进行数据同步,为了保证数据的强一致,我们当时采用的是redisson提供的读写锁来保证数据的同步(共享锁和排他锁)

方案2-高可用、延迟一致性

1、热点数据展示,对实时性不是要求高,于是采用rabbitmq做了消息队列,从而实现消息的高可用。
2、利用canal中间件,不需要修改业务代码,伪装为mysql的一个从节点,canal通过读取binlog数据更新缓存。基于mysql的主从同步特性,不断更新二进制文件到缓存中

在Redis中提供了两种数据持久化的方式:1、RDB 2、AOF

bgsave
#开启子进程执行RDB,避免主进程受到影响

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。

AOF的含义是追加文件,也就是数据量多的时候,会触发重写操作,也就是汇总的意思,跟kafkastream的意思一样,当redis操作写命令的时候,都会存储这个文件中,当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据

这两种方式,哪种恢复的比较快呢?
RDB因为是二进制文件,在保存的时候体积也是比较小的,它恢复的比较快,但是它有可能会丢数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢数据的风险要小很多,在AOF文件中可以设置刷盘策略,我们当时设置的就是每秒批量写入一次命令。

Redis的数据过期策略有哪些 ?

第一种是惰性删除,在设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。

第二种是 定期删除,就是说每隔一段时间,我们就对一些key进行检查,删除里面过期的key

定期清理的两种模式:

  • SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的 hz 选项来调整这个次数
  • FAST模式执行频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms

Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用。

Redis的数据淘汰策略有哪些 ?

noeviction、lru、lfu

嗯,这个在redis中提供了很多种,默认是noeviction,不删除任何数据,内部不足直接报错

是可以在redis的配置文件中进行设置的,里面有两个非常重要的概念,一个是LRU,另外一个是LFU

LRU的意思就是最少最近使用,用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。

LFU的意思是最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高

我们在项目设置的allkeys-lru,挑选最近最少使用的数据淘汰,把一些经常访问的key留在redis中

数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ?

可以使用 allkeys-lru (挑选最近最少使用的数据淘汰)淘汰策略,那留下来的都是经常访问的热点数据

Redis分布式锁如何实现 ?

在redis中提供了一个命令setnx(SET if not exists)
由于redis的单线程的,用了命令之后,只能有一个客户端对某一个key设置值,在没有过期或删除key的时候是其他客户端是不能设置这个key的

怎么控制redis锁过期时间?

当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了。WatchDog会给持有锁的线程续期(默认是每隔10秒续期一次)

还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自旋不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。

从而实现分布式锁的高使用率

redisson实现的分布式锁是可重入的吗?

是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数
在这里插入图片描述

redisson实现的分布式锁能解决主从一致性的问题吗

这个是不能的,比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。

我们可以利用redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求是redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。

但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变的很低了,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁

RedLock(红锁): 不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁(n /2 + 1),避免单个redis实例上加锁。

如果业务非要保证数据的强一致性,这个该怎么解决呢?

redis本身就是支持高可用的,做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用zookeeper实现的分布式锁,它是可以保证强一致性的。

Redis集群有哪些方案, 知道嘛 ?

主从复制、哨兵模式、Redis分片集群

主从复制

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中

主从同步数据的流程

主从同步分为了两个阶段,一个是全量同步,一个是增量同步
全量是第一次主节点和从节点建立连接,增量是后续连接。第一次连接会发送从节点的replid id表示唯一表示,和offset,这个在增量中的作用是将offset后的数据发送给从节点
在这里插入图片描述

全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:
第一:从节点请求主节点同步数据,其中从节点会携带自己的replication id和offset偏移量。

第二:主节点判断是否是第一次请求,主要判断的依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。

第三:在同时主节点会执行bgsave,生成rdb文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的rdb文件,这样就保持了一致

当然,如果在rdb生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致了,后期再同步数据的时候,都是依赖于这个日志文件,这个就是全量同步

增量同步指的是,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步

哨兵模式

Redis提供了哨兵(Sentinel)机制来实现主从集群自动故障恢复。哨兵的结构和作用如下
包含了对主从服务的监控自动故障恢复通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用。也就是如何保证Redis高可用高并发的方法

哨兵选主规则

  • 首先判断主与从节点断开时间长短如超过指定值就排除该从节点
  • 然后判断从节点的slave-priority值,越小优先级越高
  • 如果slave-prority一样,则判断slave节点的offset值,越大优先级越高
  • 最后是判断slave节点的运行id大小越小优先级越高。

你们使用redis是单点还是集群,哪种集群

候选人:嗯!,我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务

redis集群脑裂,该怎么解决呢?

候选人:嗯! 这个在项目很少见,不过脑裂的问题是这样的,我们现在用的是redis的哨兵模式集群的

有的时候由于网络等原因可能会出现脑裂的情况,就是说,由于redis master节点和redis salve节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个salve为master,而客户端一直还是给之前的master节点写入数据,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将old master降为salve,这时再从新master同步数据,这会导致old master中的大量数据丢失

关于解决的话,我记得在redis的配置中可以设置:

第一可以设置最少的salve节点个数,比如设置至少要有一个从节点才能同步数据
第二个可以设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失

分片集群

分片集群主要解决的是,海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点。相当于实现了哨兵模式的服务监控、自动故障恢复、服务故障来源的功能
blog.csdnimg.cn/5e689fbdf5b04f8b9c14b039d782f738.png)
在这里插入图片描述
在这里插入图片描述

redis的分片集群有什么作用

  • 集群中有多个master,每个master保存不同数据
  • 每个master都可以有多个slave节点
  • master之间通过ping监测彼此健康状态
  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

Redis分片集群中数据是怎么存储和读取的?

  • Redis 分片集群引入了哈希槽的概念,Redis 集群有 16384个哈希槽
  • 将16384个插槽分配到不同的实例
  • 读写数据:根据key的有效部分计算哈希值,对16384取余(有效部分,如果key前面有大括号,大括号的内容就是有效部分,如果没有,则以kev本身做为有效部分)余数做为插槽,寻找插槽所在的实例(也就是集群中的主节点)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/196679.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信创之路数据库人大金仓篇

概要 信创大势所趋,吾等上下求索 参考文档 Linux:人大金仓数据库-KingBaseES V8与 php7的连接配置 laravel9适配人大金仓(kingbase)数据库 thinkphp6适配人大金仓(Kingbase)数据库 数据库选型 目前比较…

kafka入门(一):kafka消息消费

安装kafka,创建 topic: Windows安装kafka, 详情见:https://blog.csdn.net/sinat_32502451/article/details/133067851 Linux 安装kafka,详情见:https://blog.csdn.net/sinat_32502451/article/details/133080353 添…

[Docker]六.Docker自动部署nodejs以及golang项目

一.自动部署nodejs 1.创建node项目相关文件 app.js代码如下: var express require(express);var appexpress();app.get(/,function(req,res){res.send(首页update); }) app.get(/news,function(req,res){res.send(首页); })//docker做端口映射的时候不要指定ip app.listen(30…

智能指针面试题

智能指针被问到的概率还是很大的,特别是Shared_ptr,最好会手撕,亲身经历! 基本概念 1. RAll RAII(Resource Acquisition Is Initialization)是一种利用对象生命周期来控制程序资源(如内存、文…

解决更换NodeJs版本后npm -v返回空白

一、问题描述 win11电脑上输入cmd进入控制台,输入 node --version 有正常返回安装的nodejs的版本号 再输入 npm -v 返回空白。正常情况应该是要返回版本号。 二、问题背景 最近准备学习vue,在不久前已经安装了NodeJs和python。运行了好几个开源项…

Git配置代理:fatal: unable to access*** github Failure when receiving data from

~吐槽一下 github自从被微软收购以后,大多数情况没点科技上网都进不去了,还是怀念以前随时访问的时光。 我一直都是开着系统代理的,但是今天拉一个项目发现拉不下来了,报错: fatal: unable to access https://githu…

Maven介绍及仓库配置

目录 一.Maven 1.介绍 坐标 仓库 1)中央仓库 2)本地仓库 3)私服 配置国内源 配置过程 二.Maven功能 2.项目构建 3.依赖管理 Maven Help插件 安装 ​使用 一.Maven 1.介绍 坐标 唯一的,通过以下代码的三个键值对确…

搜索引擎ElasticSearch分布式搜索和分析引擎学习,SpringBoot整合ES个人心得

ElasticSearch Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elas…

tomcat8.5处理get请求时,控制台输出中文乱码问题的解决

问题描述 控制台输出中文乱码 版本信息 我使用的是tomcat8.5 问题解决 配置web.xml 注&#xff1a;SpringMVC中处理编码的过滤器一定要配置到其他过滤器之前&#xff0c;否则无效 <!--配置springMVC的编码过滤器--> <filter><filter-name>CharacterEn…

【机器学习】决策树算法理论:算法原理、信息熵、信息增益、预剪枝、后剪枝、算法选择

1. 决策树概念 通过不断的划分条件来进行分类&#xff0c;决策树最关键的是找出那些对结果影响最大的条件&#xff0c;放到前面。 我举个列子来帮助大家理解&#xff0c;我现在给我女儿介绍了一个相亲对象&#xff0c;她根据下面这张决策树图来进行选择。比如年龄是女儿择偶更…

【考研复习】二叉树的特殊存储|三叉链表存储二叉树、一维数组存储二叉树、线索二叉树

文章目录 三叉链表存储二叉树三叉链表的前序遍历&#xff08;不使用栈&#xff09;法一三叉链表的前序遍历&#xff08;不使用栈&#xff09;法二 一维数组存储二叉树一维数组存储二叉树的先序遍历 线索二叉树的建立中序线索二叉树的遍历 真题演练 三叉链表存储二叉树 三叉链表…

安装 eslint 配置指南 及 遇到的一些问题记录

前端eslint配置指南 背景 当前前端项目风格混乱&#xff0c;每个人有自己的开发习惯&#xff0c;有自己的格式化习惯&#xff0c;不便于项目的风格统一&#xff0c;不利于代码维护有的项目eslint没有用起来&#xff0c;没有起到规范代码的作用&#xff0c;导致出现一些基础代码…

操作系统秋招面试题

自己在秋招过程中遇到的高频操作系统相关的面试题 内存管理 虚拟内存 虚拟内存的⽬的是为了让物理内存扩充成更⼤的逻辑内存&#xff0c;从⽽让程序获得更多的可⽤内存。 为了更好的管理内存&#xff0c;操作系统将内存抽象成地址空间。每个程序拥有⾃⼰的地址空间&#xff…

受电诱骗快充取电芯片XSP08:PD+QC+华为+三星多种协议9V12V15V20V

目前市面上很多家的快充充电器&#xff0c;都有自己的私有快充协议&#xff0c;如PD协议、QC协议、华为快充协议、三星快充协议、OPPO快充协议等待&#xff0c;为了让它们都能输出快充电压&#xff0c;就需要在受电端也增加快充协议取电芯片XSP08&#xff0c;它可以和充电器通讯…

Uniapp导出的iOS应用上架详解

​ 目录 Uniapp导出的iOS应用上架详解 摘要 引言 苹果审核标准 苹果调试 注意事项和建议 总结 摘要 本文将探讨Uniapp导出的iOS应用能否成功上架的问题。我们将从苹果审核标准、性能影响、调试流程等多个方面进行深入分析&#xff0c;以及向开发者提供相关注意事项和建…

os.path.join函数用法

os.path.join()是Python中用于拼接文件路径的函数&#xff0c;它可以将多个字符串拼接成一个路径&#xff0c;并且会根据操作系统的规则自动使用合适的路径分隔符。 注&#xff1a;Linux用的是/分隔符&#xff0c;而Windows才用的是\。 该函数属于os.path模块&#xff0c;因此在…

Ajax 之XMLHttpRequest讲解

一直以来都听别人说Ajax,今天终于接触到了。。。。。。。。。。 一.什么是Ajax? 答: AJAX即“Asynchronous Javascript And XML”&#xff08;异步JavaScript和XML&#xff09;&#xff0c;是指一种创建交互式网页应用的网页开发技术。 AJAX 异步 JavaScript和XML&#x…

Intellij Idea屏蔽日志/过滤日志

一、安装插件 Grep Console 二、设置关键词&#xff0c;过滤日志 关键词的前后加上 .* 符号&#xff0c;类似&#xff1a; .*关键词.*设置后 &#xff0c;点击 Apply 即可过滤日志。

【整顿C盘】pycharm、chrome等软件,缓存移动

C盘爆了&#xff0c;特来找一下巨大的软件缓存&#xff0c;特此记录&#xff0c;跟随的各大教程&#xff0c;和自己的体会 一、爆炸家族JetBrains 这个适用于pycharm、idea、webstorm等等&#xff0c;只要是JetBrains家的&#xff0c;2020版本以上&#xff0c;都是一样的方法 p…

【第2章 Node.js基础】2.7 Node.js 的流(一)可写流

&#x1f308;可写流 &#x1f680;什么是可写流 可写流是对数据被写入的目的地的一种抽象。 所有可写流都实现了 stream.Writable类定义的接口。 可写流的例子包括&#xff0c;也都是实现了可写流接口的双工流 客户端的 HTTP 请求、服务器的HTTP 响应、fs 的写入流、zlib…