目录
- 一、离散动作
- 二、连续动作
- 1、例子1
- 2、知乎给出的示例
- 2、github里面的代码
免责声明:以下代码部分来自网络,部分来自ChatGPT,部分来自个人的理解。如有其他观点,欢迎讨论!
一、离散动作
注意:本文均以PPO算法为例。
# time: 2023/11/22 21:04
# author: YanJPimport torch
import torch
import torch.nn as nn
from torch.distributions import Categoricalclass MultiDimensionalActor(nn.Module):def __init__(self, input_dim, output_dims):super(MultiDimensionalActor, self).__init__()# Define a shared feature extraction networkself.feature_extractor = nn.Sequential(nn.Linear(input_dim, 128),nn.ReLU(),nn.Linear(128, 64),nn.ReLU())# Define individual output layers for each action dimensionself.output_layers = nn.ModuleList([nn.Linear(64, num_actions) for num_actions in output_dims])def forward(self, state):# Feature extractionfeatures = self.feature_extractor(state)# Generate Categorical objects for each action dimensioncategorical_objects = [Categorical(logits=output_layer(features)) for output_layer in self.output_layers]return categorical_objects# 定义主函数
def main():# 定义输入状态维度和每个动作维度的动作数input_dim = 10output_dims = [5, 8] # 两个动作维度,分别有 3 和 4 个可能的动作# 创建 MultiDimensionalActor 实例actor_network = MultiDimensionalActor(input_dim, output_dims)# 生成输入状态(这里使用随机数据作为示例)state = torch.randn(1, input_dim)# 调用 actor 网络categorical_objects = actor_network(state)# 输出每个动作维度的采样动作和对应的对数概率for i, categorical in enumerate(categorical_objects):sampled_action = categorical.sample()log_prob = categorical.log_prob(sampled_action)print(f"Sampled action for dimension {i+1}: {sampled_action.item()}, Log probability: {log_prob.item()}")if __name__ == "__main__":main()#Sampled action for dimension 1: 1, Log probability: -1.4930928945541382
#Sampled action for dimension 2: 3, Log probability: -2.1875085830688477
注意代码中categorical函数的两个不同传入参数的区别:参考链接
简单来说,logits是计算softmax的,probs直接就是已知概率的时候传进去就行。
二、连续动作
参考链接:github、知乎
为什么取对数概率?参考回答
1、例子1
先看如下的代码:
# time: 2023/11/21 21:33
# author: YanJP
#这是对应多维连续变量的例子:
# 参考链接:https://github.com/XinJingHao/PPO-Continuous-Pytorch/blob/main/utils.py
# https://www.zhihu.com/question/417161289
import torch.nn as nn
import torch
class Policy(nn.Module):def __init__(self, in_dim, n_hidden_1, n_hidden_2, num_outputs):super(Policy, self).__init__()self.layer = nn.Sequential(nn.Linear(in_dim, n_hidden_1),nn.ReLU(True),nn.Linear(n_hidden_1, n_hidden_2),nn.ReLU(True),nn.Linear(n_hidden_2, num_outputs))class Normal(nn.Module):def __init__(self, num_outputs):super().__init__()self.stds = nn.Parameter(torch.zeros(num_outputs)) #创建一个可学习的参数 def forward(self, x):dist = torch.distributions.Normal(loc=x, scale=self.stds.exp())action = dist.sample((every_dimention_output,)) #这里我觉得是最重要的,不填sample的参数的话,默认每个分布只采样一个值!!!!!!!!return actionif __name__ == '__main__':policy = Policy(4,20,20,5)normal = Normal(5) #设置5个维度every_dimention_output=10 #每个维度10个输出observation = torch.Tensor(4)action = normal.forward(policy.layer( observation))print("action: ",action)
- self.stds.exp(),表示求指数,因为正态分布的标准差都是正数。
- action = dist.sample((every_dimention_output,))这里最重要!!!
2、知乎给出的示例
class Agent(nn.Module):def __init__(self, envs):super(Agent, self).__init__()self.actor_mean = nn.Sequential(layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),nn.Tanh(),layer_init(nn.Linear(64, 64)),nn.Tanh(),layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),)self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))def get_action_and_value(self, x, action=None):action_mean = self.actor_mean(x)action_logstd = self.actor_logstd.expand_as(action_mean)action_std = torch.exp(action_logstd)probs = Normal(action_mean, action_std)if action is None:action = probs.sample()return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)
这里的np.prod(envs.single_action_space.shape),表示每个维度的动作数相乘,然后初始化这么多个actor网络的标准差和均值,最后action里面的sample就是采样这么多个数据。(感觉还是拉成了一维计算)
2、github里面的代码
github
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Beta,Normalclass GaussianActor_musigma(nn.Module):def __init__(self, state_dim, action_dim, net_width):super(GaussianActor_musigma, self).__init__()self.l1 = nn.Linear(state_dim, net_width)self.l2 = nn.Linear(net_width, net_width)self.mu_head = nn.Linear(net_width, action_dim)self.sigma_head = nn.Linear(net_width, action_dim)def forward(self, state):a = torch.tanh(self.l1(state))a = torch.tanh(self.l2(a))mu = torch.sigmoid(self.mu_head(a))sigma = F.softplus( self.sigma_head(a) )return mu,sigmadef get_dist(self, state):mu,sigma = self.forward(state)dist = Normal(mu,sigma)return distdef deterministic_act(self, state):mu, sigma = self.forward(state)return mu
上述代码主要是通过设置mu_head 和sigma_head的个数,来实现多维动作。
class GaussianActor_mu(nn.Module):def __init__(self, state_dim, action_dim, net_width, log_std=0):super(GaussianActor_mu, self).__init__()self.l1 = nn.Linear(state_dim, net_width)self.l2 = nn.Linear(net_width, net_width)self.mu_head = nn.Linear(net_width, action_dim)self.mu_head.weight.data.mul_(0.1)self.mu_head.bias.data.mul_(0.0)self.action_log_std = nn.Parameter(torch.ones(1, action_dim) * log_std)def forward(self, state):a = torch.relu(self.l1(state))a = torch.relu(self.l2(a))mu = torch.sigmoid(self.mu_head(a))return mudef get_dist(self,state):mu = self.forward(state)action_log_std = self.action_log_std.expand_as(mu)action_std = torch.exp(action_log_std)dist = Normal(mu, action_std)return distdef deterministic_act(self, state):return self.forward(state)
class Critic(nn.Module):def __init__(self, state_dim,net_width):super(Critic, self).__init__()self.C1 = nn.Linear(state_dim, net_width)self.C2 = nn.Linear(net_width, net_width)self.C3 = nn.Linear(net_width, 1)def forward(self, state):v = torch.tanh(self.C1(state))v = torch.tanh(self.C2(v))v = self.C3(v)return v
上述代码只定义了mu的个数与维度数一样,std作为可学习的参数之一。