【计算机视觉中的多视图几何系列】深入浅出理解针孔相机模型

温故而知新,可以为师矣!

一、参考资料

《计算机视觉中的多视图几何-第五章》-Richard Hartley, Andrew Zisserman.

二、针孔模型相关介绍

1. 重要概念

在这里插入图片描述

1.1 投影中心/摄像机中心/光心

投影中心称为摄像机中心,也称为光心。投影中心位于一个欧式坐标系的原点。

1.2 图像平面/聚焦平面

平面 Z = f Z=f Z=f 被称为图像平面聚焦平面

1.3 主轴/主射线

摄像机中心到图像平面的垂线称为摄像机的主轴主射线

1.4 主点

主轴与图像平面的交点称为主点

1.5 主平面(摄像机)

过摄像机中心平行于图像平面的平面称为摄像机的主平面

2. 摄像机投影

从3维世界降到2维图像是一个投影过程,在此过程中我们失去了一维。建模这个过程的常用方式是利用中心投影,由空间中的一个点引出一条从3D世界点到空间中的一个固定点(投影中心)的射线,这条射线将与空间中被选为图像平面的具体平面相交。射线与图像平面的交点表示该点的图像。
在这里插入图片描述

在针孔摄像机模型下,3维空间坐标为 X = ( X , Y , Z ) T X=(X, Y, Z)^T X=(X,Y,Z)T 的点 X X X 被投影到图像平面上的一点,该点是连接点 X X X 与投影中心的直线与图像平面的交点。根据相似三角形,可以很快地算出点 ( X , Y , Z ) T (X, Y , Z)^T (X,Y,Z)T 被映射到图像平面上点 ( f X / Z , f Y / Z , f ) T (fX/Z, fY/Z, f)^T (fX/Z,fY/Z,f)T 。略去最后一个图像坐标之后,从世界坐标到图像坐标的中心投影是:
( X , Y , Z ) T ↦ ( f X / Z , f Y / Z ) T ( 1 ) (X,Y,Z)^{T}\mapsto(fX/Z,fY/Z)^{T}\quad(1) (X,Y,Z)T(fX/Z,fY/Z)T(1)
这是从3维欧式空间 IR 3 \text{IR}^3 IR3 到 2维欧式空间 IR 2 \text{IR}^2 IR2 的一个映射

3. 投影矩阵

齐次坐标的概念:齐次坐标就是用N+1维去描述一个N维的坐标。
一个点的齐次坐标 x = ( x 1 , x 2 , x 3 ) T x=(x_1,x_2,x_3)^T x=(x1,x2,x3)T (它是3维向量)和非齐次坐标 ( x , y ) T (x,y)^T (x,y)T (它是2维向量)。

如果用齐次矢量表示世界和图像点,那么中心投影可以简单地表示成齐次坐标之间的线性映射。具体地说, 公式 ( 1 ) 公式(1) 公式(1) 可以写成如下矩阵乘积形式:
[ X Y Z 1 ] ↦ [ f x f y z ] = [ f 0 f 0 1 0 ] [ X Y Z 1 ] ( 2 ) \left.\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right.\right]\mapsto\left[\begin{array}{c}f\mathbf{x}\\f\mathbf{y}\\\mathbf{z}\end{array}\right]=\left[\begin{array}{cc}f&&&0\\&f&&0\\&&1&0\end{array}\right]\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right]\quad(2) XYZ1 fxfyz = ff1000 XYZ1 (2)
其中 [ f 0 f 0 1 0 ] \left[\begin{array}{cc}f&&&0\\&f&&0\\&&1&0\end{array}\right] ff1000 表示 3 ∗ 4 3*4 34 齐次摄像机投影矩阵,记作 P P P P P P 可以写成 d i a g ( f , f , 1 ) [ I ∣ 0 ] diag(f,f,1)[I|0] diag(f,f,1)[I∣0],其中 d i a g ( f , f , 1 ) diag(f,f,1) diag(f,f,1)对角矩阵,而 [ I ∣ 0 ] [I|0] [I∣0]表示矩阵分块成一个 3 ∗ 3 3*3 33恒等矩阵加上一个零列矢量。那么,中心投影的针孔模型的摄像机投影矩阵可以表示为:
P = d i a g ( f , f , 1 ) [ I ∣ 0 ] P=diag(f,f,1)[I|0] P=diag(f,f,1)[I∣0]

恒等矩阵的概念:恒等矩阵,又称为单位矩阵,是一个方阵,其对角线上的元素为1,其余元素均为0,记作 I I I或者 E E E。恒等矩阵的大小由其维度决定,例如3阶恒等矩阵是一个3x3的矩阵。

恒等矩阵在线性代数中具有很多重要的性质。例如,对于任意矩阵A,恒等矩阵1与A的乘积等于A本身。这是因为恒等矩阵的每个元素与A的对应元素相乘,并将其相加,得到的结果就是A本身。这个性质在矩阵的转置、逆运算等方面都有着重要的应用。

恒等矩阵在深度学习中也具有重要的作用。在神经网络中,恒等矩阵常被用作初始化权重矩阵初始化权重矩阵时,将其设置为恒等矩阵可以使得神经网络的初始状态更稳定。这是因为恒等矩阵具有一定的对称性和平衡性,可以避免梯度消失或梯度爆炸等问题,有助于提高模型的训练效果

恒等矩阵还可以用于矩阵的相似性度量。在图像处理和模式识别中,我们经常需要比较两个矩阵的相似性。通过计算两个矩阵之间的差异,可以得到它们的相似性度量。而恒等矩阵作为一个特殊的矩阵,与其他矩阵相比具有明显的差异,可以用于度量矩阵之间的相似性。

我们现在引入如下记号:世界点 X X X 用4维齐次矢量 ( X , Y , Z , 1 ) (X,Y,Z,1) (X,Y,Z,1)表示;图像点 x x x 被表示成3维齐次矢量的形式。则 公式 ( 2 ) 公式(2) 公式(2) 可以紧凑地写为:
x = P X x=PX x=PX

4. 主点偏置

公式 ( 1 ) 公式(1) 公式(1) 假定图像平面的坐标原点在主点上。实际情况可能不是这样,如下图所示:

在这里插入图片描述
摄像机坐标系 ( x c a m , y c a m ) T (x_{cam},y_{cam})^T (xcam,ycam)T的坐标原点为摄像机中心,该原点在图像平面的投影是主点p。图像坐标系 ( x , y ) T (x,y)^T (x,y)T 的坐标原点为图像的左下角。

因此一般情形的映射为:
( X , Y , Z ) T ↦ ( f X / Z + p x , f Y / Z + p y ) T (X,Y,Z)^{T}\mapsto(fX/Z+p_x,fY/Z+p_y)^{T} \\ (X,Y,Z)T(fX/Z+px,fY/Z+py)T
其中 ( p x , p y ) T (p_x,p_y)^T (px,py)T 是主点的坐标。该方程用齐次坐标可以表示为:
[ X Y Z 1 ] ↦ [ f x + Z p x f y + Z p y z ] = [ f p x 0 f p x 0 1 0 ] [ X Y Z 1 ] ( 3 ) \left.\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right.\right]\mapsto\left[\begin{array}{c}f\mathbf{x+Zp_x}\\f\mathbf{y+Zp_y}\\\mathbf{z}\end{array}\right]=\left[\begin{array}{cc}f&&p_x&0\\&f&p_x&0\\&&1&0\end{array}\right]\left[\begin{array}{c}\mathbf{X}\\\mathbf{Y}\\\mathbf{Z}\\\mathbf{1}\end{array}\right]\quad(3) XYZ1 fx+Zpxfy+Zpyz = ffpxpx1000 XYZ1 (3)
若记
K = [ f p x f p x 1 ] ( 4 ) K=\left[\begin{array}{cc}f&&p_x\\&f&p_x\\&&1\end{array}\right]\quad(4) K= ffpxpx1 (4)
公式 ( 3 ) 公式(3) 公式(3) 有一个简洁的形式:
x = K [ I ∣ 0 ] X c a m ( 5 ) x=K[I|0]X_{cam}\quad(5) x=K[I∣0]Xcam(5)
矩阵 K K K 称为摄像机标定矩阵,在 公式 ( 5 ) 公式(5) 公式(5) 中我们记 ( X , Y , Z , 1 ) T (X,Y,Z,1)^T (X,Y,Z,1)T X c a m X_{cam} Xcam 是为了强调摄像机被设定在一个欧式坐标系的原点且主轴沿着 z z z 轴的指向,而点 X c a m X_{cam} Xcam 按此坐标系表示。这样的坐标系可以称为摄像机坐标系

摄像机坐标系的原点为摄像机中心 z z z轴方向指向主轴

5. 摄像机旋转与位移

一般,3维空间点采用不同的欧式坐标系表示,称为世界坐标系摄像机坐标系与世界坐标系通过旋转平移相联系
在这里插入图片描述

世界坐标系和摄像机坐标系之间的欧式转换

如果 X ~ \widetilde{X} X 是一个3维非齐次矢量,表示世界坐标系中一点的坐标,而 X ~ c a m \widetilde{X}_{cam} X cam 是以摄像机坐标系来表示的同一点,那么我们可以记 X ~ c a m = R ( X ~ − C ~ ) \widetilde{X}_{cam}=R\left(\widetilde{X}-\widetilde{C}\right) X cam=R(X C ) ,其中 C ~ \widetilde{C} C 表示摄像机中心在世界坐标系中的坐标, R R R 是一个 3 ∗ 3 3*3 33 的旋转矩阵,表示摄像机坐标系的方位。这个方程在齐次坐标系下可以写成:
X c a m = [ R − R C ~ 0 T 1 ] [ X Y Z 1 ] = [ R − R C ~ 0 T 1 ] X ( 6 ) X_{cam}=\begin{bmatrix}R&-R\widetilde{C}\\0^{T}&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}=\begin{bmatrix}R&-R\widetilde{C}\\0^{T}&1\end{bmatrix}\mathbf{X}\quad(6) Xcam=[R0TRC 1] XYZ1 =[R0TRC 1]X(6)
把它与 公式 ( 5 ) 公式(5) 公式(5) 结合起来形成公式:
x = K R [ I ∣ − C ~ ] X ( 7 ) x=KR\left[I|-\widetilde{C}\right]X\quad(7) x=KR[IC ]X(7)
其中 X X X 用世界坐标系表示。这是由一个针孔模型给出的一般映射。

6. 摄像机内部参数与外部参数

公式 ( 7 ) 公式(7) 公式(7) 可以看出,一般的针孔摄像机 P = K R [ I ∣ − C ~ ] P=KR\left[I|-\widetilde{C}\right] P=KR[IC ] 有9个自由度:3个来自 K (元素 f , p x , p y ) K(元素 f,p_x, p_y) K(元素f,px,py,3个来自 R R R,3个来自 C ~ \widetilde{C} C 。包含在 K K K 中的参数称为摄像机内部参数摄像机的内部校准。包含在 R R R C ~ \widetilde{C} C 中的参数与摄像机在世界坐标系中的方位和位置有关,并称为外部参数外部校准

为方便起见,通常摄像机中心不明显标出,而把世界坐标系到图像坐标系的变换表示成 X ~ c a m = R X ~ + t \widetilde{X}_{cam}=R\widetilde{X}+t X cam=RX +t。在次情形时摄像机矩阵简化成:
P = k [ R ∣ t ] ( 8 ) P=k[R|t]\quad(8) P=k[Rt](8)
其中根据 公式 ( 7 ) 公式(7) 公式(7) t = − R C ~ t=-R\widetilde{C} t=RC

7. CCD摄像机

对于基本针孔模型,假定图像坐标在两个轴向上有等尺度的欧式坐标。但CCD摄像机的像素可能不是正方形。如果图像坐标以像素来测量,那么需要在每个方向上引入非等量尺度因子。具体地说,如果在 x x x y y y 方向上图像坐标单位距离的像素数分别是 m x m_x mx m y m_y my,那么由世界坐标到像素坐标的变换由 公式 ( 4 ) 公式(4) 公式(4) 左乘一个附加的因子 d i a g ( m x , m y , 1 ) diag(m_x,m_y,1) diag(mx,my,1) 而得到。因此一个CCD摄像机标定矩阵的一般形式是:
K = [ a x x 0 a y y 0 1 ] ( 9 ) K=\left[\begin{array}{cc}a_x&&x_0\\&a_y&y_0\\&&1\end{array}\right]\quad(9) K= axayx0y01 (9)
其中 a x = f m x a_x=fm_x ax=fmx a y = f m y a_y=fm_y ay=fmy 分别把摄像机的焦距换算成 x x x y y y 方向的像素量纲。同理, x ~ 0 = ( x 0 , y 0 ) T \widetilde{x}_0=(x_0,y_0)^T x 0=(x0,y0)T 是用像素量纲表示的主点,它的坐标是 x 0 = m x p x x_0=m_xp_x x0=mxpx y 0 = m y p y y_0=m_yp_y y0=mypy。因此,一个CCD摄像机有10个自由度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/224387.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

50个免费的 AI 工具,提升工作效率(附网址)

上次我们已经介绍了20个精选的提高工作效率的免费AI工具,但如果你觉得这些AI工具还不过瘾的话,想进一步成为职场中最了解AI的人,本文将汇总介绍免费最新的50个AI工具。 DeepSwap DeepSwap 是一个基于 AI 的工具,适用于想要制作令人…

给零基础朋友的编程课07 - 代码

给零基础朋友的编程课07-初识色彩、初识变量、案例3讲解_哔哩哔哩_bilibili Code: // // 案例3 // //// -设定画面- // size(1000, 1000); // 设置画面大小 background(7, 119, 132); // 设置背景颜色// - 绘画 - //// 1 绘制垂线 // 设定线条风格 …

WebAssembly 的魅力:高效、安全、跨平台(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

Topaz Video AI 视频修复工具(内附安装压缩包win+Mac)

目录 一、Topaz Video AI 简介 二、Topaz Video AI 安装下载 三、Topaz Video AI 使用 最近玩上了pika1.0和runway的图片转视频,发现生成出来的视频都是有点糊的,然后就找到这款AI修复视频工具 Topaz Video AI。 一、Topaz Video AI 简介 Topaz Video…

解决ELement-UI三级联动数据不回显

目录 一.处理数据时使用this.$set方法来动态地设置实例中的属性,以确保其响应式。 二.检查数据格式是否正确 三.绑定v-if 确保每次执行 四.完整代码 一.处理数据时使用this.$set方法来动态地设置实例中的属性,以确保其响应式。 二.检查数据格式是否正确…

Milvus数据一致性介绍及选择方法

1、Milvus 时钟机制 Milvus 通过时间戳水印来保障读链路的一致性,如下图所示,在往消息队列插入数据时, Milvus 不光会为这些插入记录打上时间戳,还会不间断地插入同步时间戳,以图中同步时间戳 syncTs1 为例&#xff0…

Redis数据库——键过期时间

一.设置键的生存时间或者过期时间 我们可以在Redis客户端输入命令,可以以秒或者毫秒精度为数据库中的某个键设置生存时间,在指定秒数或者毫秒数之后,服务器会自动删除生存时间为0的键。 1.1 设置过期时间 Redis有四个不同的命令可以用于设置键…

【网络编程】基于UDP数据报实现回显服务器/客户端程序

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程的一点学习心得,欢迎大家在评论区交流讨论💌 前言 我们如果…

插入排序详解(C语言)

前言 插入排序是一种简单直观的排序算法,在小规模数据排序或部分有序的情况下插入排序的表现十分良好,今天我将带大家学习插入排序的使用。let’s go ! ! ! 插入排序 插入排序的基本思想是将待排序的序列分为已排序和未排序两部分。初始时&#xff0c…

3D模型人物换装系统(二 优化材质球合批降低DrawCall)

3D模型人物换装系统 介绍原理合批材质对比没有合批材质核心代码完整代码修改总结 介绍 本文使用2018.4.4和2020.3.26进行的测试 本文没有考虑法线贴图合并的问题,因为生成法线贴图有点问题,放在下一篇文章解决在进行优化 如果这里不太明白换装的流程可以…

Spark Shell的简单使用

简介 Spark shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言。即使你对Scala不熟悉,仍然可以使用这个工具。Spark shell使得用户可以和Spark集群交互,提交查询,这便于调试,也便于初学者使用…

蓝桥杯c/c++程序设计——数位排序

数位排序【第十三届】【省赛】【C组】 题目描述 小蓝对一个数的数位之和很感兴趣,今天他要按照数位之和给数排序。 当两个数各个数位之和不同时,将数位和较小的排在前面,当数位之和相等时,将数值小的排在前面。 例如&#xff0…

【序列化和反序列化】

🍁什么是序列化和反序列化? 🍁典型解析🍁拓展知识仓🍁如何进行序列化和反序列化🍁未实现Serializable,可以序列化吗? 🍁典型解析 在Java中,我们可以通过多种方式来创建对…

大师计划1.0 - log2 CRTO笔记

CRTOⅠ笔记 log2 这个笔记是我在2023年11月23日-12月22日中,学习CRTO所做的一些笔记。 事实上TryHackMe的路径和htb学院包含了许多CRTO的知识并且甚至还超出了CRTO(CS除外),所以很多东西在THM和htb学院学过,这次CRTO等…

如何使用PatchaPalooza对微软每月的安全更新进行全面深入的分析

关于PatchaPalooza PatchaPalooza是一款针对微软每月安全更新的强大分析工具,广大研究人员可以直接使用该工具来对微软每月定期推送的安全更新代码进行详细、全面且深入的安全分析。 PatchaPalooza使用了微软MSRC CVRF API的强大功能来获取、存储和分析安全更新数…

探索 HTTP 请求的世界:get 和 post 的奥秘(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

MY FILE SERVER: 1

下载地址 https://download.vulnhub.com/myfileserver/My_file_server_1.ova 首先我们需要发现ip 我的kali是59.162所以167就是靶机的 然后我们拿nmap扫一下端口 nmap -sV -p- 192.168.59.167 扫完发现有七个端口开放 按照习惯先看80 没看到有啥有用信息,用nikto扫一下 nik…

Kafka日志文件存储

日志文件 kafka在server.properties配置文件中通过log.dir属性指定了Kafka的日志存储路径 核心文件 1. log文件 实际存储消息的日志文件, 大小固定1G(参数log.segment.bytes可配置), 写满后就会新增一个新的文件, 文件名是第一条消息的偏移量 2. index文件 以偏移量为索引…

IP代理科普| 共享IP还是独享IP?两者的区别与优势

通俗地讲,共享IP就像乘坐公共汽车一样,您可以到达目的地,但将与其他乘客共享旅程,座位很可能是没有的。独享IP就像坐出租车一样,您可以更快到达目的地,由于车上只有您一个人,座位是您一个人专用…

java实现深度优先搜索 (DFS) 算法

度优先搜索(Depth First Search,DFS)算法是一种用于遍历或搜索图或树的算法。这种算法从一个节点开始,沿着一条路径尽可能深地搜索,直到遇到不能继续前进的节点时返回上一个节点,然后继续搜索其他路径。具体…