【计算机视觉】角点检测(Harris、SIFT)

Harris

角点指的是窗口延任意方向移动,都有很大变化量的点。

用数学公式表示为:

E(u,v)反映的移动后窗口的差异,w(x,y)为每个像素的点权值,I(x+u,y+v)是移动的像素值,I(x,y)是移动前的像素值。

将E(u,v)进行泰勒展开,直接建立E(u,v)和u,v的联系

最终:

M称为二阶矩矩阵(second moment matrix)

I_x,I_y 互不影响:

M=\begin{bmatrix} \lambda _1 & 0\\0 & \lambda_2 \end{bmatrix}

假设 \lambda 2 = 0

只有在u方向上变化是E才会变,因此只有 \lambda 1, \lambda 2 都不为0时(x,y)才是角点。

I_x,I_y 相关可以通过正交化变成前面的形式:

M = \begin{bmatrix} a &c \\c & d \end{bmatrix}= R^{-1}\begin{bmatrix} \lambda_1 &0 \\ 0&\lambda_2 \end{bmatrix}R= R^{T}\begin{bmatrix} \lambda_1 &0 \\ 0&\lambda_2 \end{bmatrix}R

\lambda_1,\lambda_2就反映了点在某个方向上的变化率,之后当\lambda_1,\lambda_2都很大时,该点才是角点。

为了减少计算可以用R来判定是否为角点

SIFT

Harris角点检测不具有尺度不变性,窗口大小不同,响应的结果也不同。

所谓的尺度不变性,指的是提取器能够对不同的尺度下的同一个点,有比较大的响应值。

接下来,介绍的SIFT就是具有尺度不变性的特征提取算法。

在边缘提取的时候,用高斯一阶导对信号进行卷积,响应值最大的就是边界。

如果用高斯二阶导对信号进行卷积,0点就是边界点(二阶导等于0的点,对应一阶导的极值点)如果用高斯二阶导在不同的信号上进行卷积,当信号宽度与高斯滤波核匹配的时候,就能得到绝对值最大的信号,这样就建立了尺度和滤波核之间的联系。

用不同的Laplacian对同一个信号进行卷积的时候,随着\sigma的增大,响应值会越来越不明显。

因为\sigma作为分母,\sigma越来越大,卷积后的信号值就会越来越小 ,对于一阶偏导需要对卷积后的信号补偿\sigma,对于二阶偏导需要对卷积后的信息补偿\sigma ^2 ,将响应值固定在一个尺度上。

补偿之后,就能用\sigma反映尺度

二维Laplacian高斯卷积核如下图所示:

当半径值正好与Laplacian为0的值匹配上的时候,响应值最大

假设这个圆是二进制的,简单来说就是找到一个合适的laplacian卷积核,卷积之后使得laplacian卷积核中小于0的部分权值为0,laplacian大于0的部分权值为1。

找到合适的laplacian卷积核,它的\sigma与信号半径有对应关系

SIFT使用的是DoG模版(两个高斯模版的差分),拥有和Laplacian类似的特性

一般而言,随着\sigma的增大,窗口也会变大,Laplacian每一次都会在原图进行卷积,卷积的成本就会增大。而DoG是利用高斯卷积核来做的,可以通过对较小\sigma的卷积核卷积得到较大\sigma的卷积核,减小卷积成本。

在找合适的尺度空间的时候,会进行非极大值抑制,只有当该点是27(上下两个尺度18个,当前尺度9个)个领接点中的极值时,认为该点为特征点,因此,有效DoG 个数为S时,总共的DoG个数为S+2(首尾不能构成三个尺度空间)。

每一个Octave表示对GuassianSpace缩小1/2后卷积,当我们需要更大的尺度的时候,需要跟大的sigma,意味着更大的卷积核更多的计算。SIFT算法中,将这样操作可以转换为,将图像缩小1/2,得到结果后将响应的sigma放大2倍,这样减少了计算的同时也得到了更大的尺度空间。

K的取值同样也很讲究,k=2^{1/s} ,s为有效DoG个数。

K这样取值的好处是,对应高斯空间来说,只要将倒数第三图下采样2倍就能得到下一个Octave的第一个图,对于DoG空间来说,当前最后一个有效DoG的sigma与下一个Octave的第一个有效DoG的sigma是连续的(如图所示)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226425.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL进阶之(一)逻辑架构

一、逻辑架构 1.1 逻辑架构剖析1.1.1 连接层1.1.2 服务层01、基础服务组件02、SQL Interface:SQL 接口03、Parser:解析器04、Optimizer:查询优化器05、Caches & Buffers: 查询缓存组件 1.1.3 引擎层1.1.4 存储层1.1.5 总结 1.…

elasticsearch系列九:异地容灾-CCR跨集群复制

概述 起初只在部分业务中采用es存储数据,在主中心搭建了个集群,随着es在我们系统中的地位越来越重要,数据也越来越多,针对它的安全性问题也越发重要,那如何对es做异地容灾呢? 今天咱们就一起看下官方提供的…

25、商城系统(七):商城项目基础功能pom.xml(重要),mybatis分页插件

截止这一章,我们就不把重心放在前端,后台的基础代码,因为后面都是业务层面的crud。 前端直接替换这两个文件夹即可,后台代码也直接复制: 一、重新更新一下所有的pom.xml 这个地方我踩了好多坑,最后得到一个完整的pom.xml,建议大家直接用我的pom.xml替换即可。 1.comm…

大数据与人工智能|万物皆算法(第三节)

要点一:数据与智能的关系 1. 一切的核心都是数据,数据和智能之间是密切相关的。 数据是对客观现实的描述,而信息是数据转化而来的。 例如,24是数据,但说“今天的气温是24摄氏度”是信息,而说“班可以分成24…

How to Develop Word Embeddings in Python with Gensim

https://machinelearningmastery.com/develop-word-embeddings-python-gensim/ 本教程分为 6 个部分;他们是: 词嵌入 Gensim 库 开发 Word2Vec 嵌入 可视化单词嵌入 加载 Google 的 Word2Vec 嵌入 加载斯坦福大学的 GloVe 嵌入 词嵌入 单词嵌入是一种提供单词的…

web自动化(4)——POM设计重构

1. 什么是POM Page Object Model 是ui自动化测试中常见的封装方式。 原理:将页面封装为PO对象,然后通过面向对象的方式实现UI自动化 2. 封装原则 PO无需包含全部UI元素PO应当验证元素PO不应该包含断言PO不应该暴露元素 3. 怎么进行POM封装 面向对象…

IntelliJ IDE 插件开发 | (四)开发一个时间管理大师插件

系列文章 IntelliJ IDE 插件开发 |(一)快速入门IntelliJ IDE 插件开发 |(二)UI 界面与数据持久化IntelliJ IDE 插件开发 |(三)消息通知与事件监听IntelliJ IDE 插件开发 |(四)开发一…

Flink1.17实战教程(第四篇:处理函数)

系列文章目录 Flink1.17实战教程(第一篇:概念、部署、架构) Flink1.17实战教程(第二篇:DataStream API) Flink1.17实战教程(第三篇:时间和窗口) Flink1.17实战教程&…

【51单片机系列】DS18B20温度传感器扩展实验之设计一个智能温控系统

本文是关于DS18B20温度传感器的一个扩展实验。 文章目录 一、相关元件介绍二、实验分析三、proteus原理图设计四、软件设计 本扩展实验实现的功能:利用DS18B20设计一个智能温度控制系统,具有温度上下限值设定。当温度高于上限值时,电机开启&a…

2023年12月28日学习记录

目录 1、今日计划学习内容2、今日学习内容文献阅读—A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction0、选这篇文章的原因1、文章的主要内容和贡献2、使用的数据集3、结果及分析4、郭郭有话说 整理流量预测的代码 3、今日学习总结 1、今日计划学习内…

边缘智能网关在智慧大棚上的应用突破物联网大关

边缘智能网关在智慧大棚上的应用,是现代农业技术的一大突破。通过与农作物生长模型的结合,边缘智能网关可以根据实时的环境数据和历史数据,预测农作物的生长趋势和产量,提供决策支持和优化方案。这对于农民来说,不仅可…

Rosalind 033 Finding a Shared Spliced Motif

题目背景: 上述问题的解决方法是使用动态规划来找出两个DNA字符串的最长公共子序列(LCS)。 https://rosalind.info/problems/lcsq/ 很经典的动态规划问题了。直接给出解题步骤: 1. 初始化矩阵:创建一个大小为 (len…

Qt的简单游戏实现提供完整代码

文章目录 1 项目简介2 项目基本配置2.1 创建项目2.2 添加资源 3 主场景3.1 设置游戏主场景配置3.2 设置背景图片3.3 创建开始按钮3.4 开始按钮跳跃特效实现3.5 创建选择关卡场景3.6 点击开始按钮进入选择关卡场景 4 选择关卡场景4.1场景基本设置4.2 背景设置4.3 创建返回按钮4.…

[react]脚手架create-react-app/vite与reac项目

[react]脚手架create-react-app/vite与reac项目 环境问题描述create-react-app 脚手架根据脚手架修改项目结构安装脚手架注入配置文件-config文件夹package.json文件变更删除 serviceWorker.js新增reportWebVitals.js文件更新index.js文件 脚手架creat-react-app 缺点 vite 脚手…

助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv6开发构建生活场景下城市部件检测识别系统

井盖、店杆、光交箱、通信箱、标石等为城市中常见部件,在方便居民生活的同时,因为后期维护的不及时往往会出现一些“井盖吃人”、“线杆、电杆、线缆伤人”事件。造成这类问题的原因是客观的多方面的,这也是城市化进程不断发展进步的过程中难…

垃圾收集器与内存分配策略

内存分配和回收原则 对象优先在Eden区分配 大对象直接进入老年代 长期存活的对象进入老年代 什么是内存泄漏 不再使用的对象在系统中未被回收,内存泄漏的积累可能会导致内存溢出 自动垃圾回收与手动垃圾回收 自动垃圾回收:由虚拟机来自动回收对象…

“2023年的技术发展与个人成长:回顾与展望“

文章目录 每日一句正能量前言工作生活未来展望后记 每日一句正能量 凡事顺其自然,遇事处于泰然,得意之时淡然,失意之时坦然,艰辛曲折必然,历尽沧桑悟然。 前言 在这快速发展的信息时代,技术的进步和创新不…

spring、springmvc、springboot、springcloud简介

spring简介 spring是什么? spring: 春天spring: 轻量级的控制反转和面向切面编程的框架 历史 2002年,首次推出spring雏形,interface 21框架2004年,发布1.0版本Rod Johnson: 创始人,悉尼大学,音乐学博士…

docker compose 部署 grafana + loki + vector 监控kafka消息

Centos7 随笔记录记录 docker compose 统一管理 granfana loki vector 监控kafka 信息。 当然如果仅仅是想通过 Grafana 监控kafka,推荐使用 Grafana Prometheus 通过JMX监控kafka 目录 1. 目录结构 2. 前提已安装Docker-Compose 3. docker-compose 自定义服…

DRF从入门到精通六(排序组件、过滤组件、分页组件、异常处理)

文章目录 一、排序组件继承GenericAPIView使用DRF内置排序组件继承APIView编写排序 二、过滤组件继承GenericAPIView使用DRF内置过滤器实现过滤使用第三方模块django-filter实现and关系的过滤自定制过滤类排序搭配过滤使用 三、分页组件分页器一:Pagination&#xf…