【强化学习】基于蒙特卡洛MC与时序差分TD的简易21点游戏应用

1. 本文将强化学习方法(MC、Sarsa、Q learning)应用于“S21点的简单纸牌游戏”。

类似于Sutton和Barto的21点游戏示例,但请注意,纸牌游戏的规则是不同且非标准的。

2. 为方便描述,过程使用代码截图,文末附链接。(如果耐心读完的话)

一. S21环境实现

游戏的规则我们设置如下:

  1. 游戏是用无限副牌进行的(即用替换牌进行采样)
  2. 从牌组中抽取的每一张牌的值都在1到10之间(均匀分布),颜色为红色(概率0.4)或黑色(概率0.6)。
  3. 此游戏中没有王牌或图片牌。
  4. 在游戏开始时,玩家和发牌人都抽到一张黑卡(双方都可以完全观察)
  5. 每轮玩家可以选择停止拿牌stick或继续拿牌hit
  6. 如果玩家hit,则从牌组中抽取另一张牌
  7. 如果玩家stick,她将不会收到更多的牌
  8. 黑色牌会增加玩家的牌值,红色牌不改牌值(等于无效)
  9. 如果玩家的总和超过21,或小于1,则她将输掉游戏(奖励-1)
  10. 如果玩家stick,则发牌人开始它的回合。对于大于等于20的总和,庄家总是保持stick,否则就会继续拿牌hit。如果经销商爆牌,则玩家获胜;否则总和最大的玩家获胜。
  11. 获胜(奖励+1)、失败(奖励-1)或平局(奖励0)

相比复杂的21点游戏,本游戏主要简化如下:
1.    可以无视前面已发的牌的牌面,不需要根据开始拿到的牌来推断后续发牌的概率。
2.    庄家和玩家分开游戏,并非轮流决定拿牌还是弃牌。
3.    牌值从1-10,且1的值不会变化。
4.    庄家策略固定,总和<20时持续拿牌。

根据任务1,我们针对上述规则定义相关类如下:

图1 基本类型定义

环境类Envi功能如下:

  1. 主要记录当前玩家和庄家的卡牌,游戏是否结束。
  2. 在玩家每步step之后 ,返回新的状态、奖励、是否结束标志。
  3. 当玩家选择stick之后,将后续的所有庄家操作纳入环境中计算。(任务1要求)
图2 基本环境类

游戏的每步操作step逻辑如下:(其中在玩家决策内更新当前的奖励和状态,存储在环境类对象上)

图3  step逻辑


 

玩家的取牌、弃牌实现如下:

  1. 当玩家取牌时,增加一张牌到player_cards中,并且更新状态和奖励
  2. 当玩家弃牌时,转为庄家操作(取牌直到20以上),结束后判定胜负。
图4 取牌逻辑

实现发牌的操作如下图所示,在1-10之间选择卡牌,并且依照概率赋予颜色。开局必发黑牌。

图 5 发牌逻辑

最后,我们根据双方牌值,计算是否发生爆牌的情况或者胜负情况。若玩家仍可继续选择,则继续游戏,更新状态和奖励。

图 6 更新状态和奖励

二. 游戏代理实现

2.1 通用代理(玩家类)

我们定义通用代理具有选择动作和训练的基本方法。后续通过不同的策略代理进行继承并实现。(蒙特卡洛代理、Sarsa代理、Q-learning代理)

图 7 通用代理

2.2 蒙特卡洛代理

2.2.1 算法过程

蒙特卡洛方法是一种模型无关(Model Free)的方法,这意味着我们需要通过模拟多次环境交互来估计出策略价值函数。

评估基本步骤如下:

  1. 生成轨迹: 在每一轮蒙特卡洛模拟中,从环境的初始状态开始,根据当前的策略生成一个完整的轨迹(也称为episode)。轨迹包括状态、动作和即时奖励的序列,直到达到终止状态。
  2. 计算回报: 对于轨迹中的每个状态,计算从该状态开始的累积回报。回报是从当前状态开始,经过一系列动作和环境反馈后获得的奖励的总和 。在这一环节,我们采用First-Visit MC这种方法,只考虑在一个episode中首次访问某个状态时计算的回报。如果同一个状态在同一个episode中被多次访问,只有第一次访问的回报会被计算在内。这样的话,一个状态在一个episode中只有一个相关的回报值。
  3. 更新价值函数: 使用得到的回报更新每个状态的价值函数。具体地,对于每个状态,将其之前的价值估计更新为其在多次模拟中获得的平均回报。
  4. 重复模拟: 重复执行多次模拟,不断累积对状态价值函数的估计。
  5. 收敛: 当状态价值函数的估计不再发生显著变化时,认为蒙特卡洛策略评估已经收敛。

即基本过程如下:

图 8 蒙特卡洛 First-Visit 过程

基于上述分析,我们定义蒙特卡洛代理如下:

图 9 蒙特卡洛代理定义

其中属性为折扣因子(默认为1),贪心策略的参数ε,以及计算状态和选择动作的次数N、所有回报总和Gs以及状态价值函数V

2.2.2 动作选择

由于蒙特卡洛需要靠初始策略进行采样,我们设置其采样策略为epsilon 贪心的策略。此策略也可以保证玩家在前期尽可能地去探索,到达所有的牌值状态。

图 10 动作策略

2.2.3 Q值更新

由上图可知,我们采取求累计回报后,再平均更新Q值的方法。实现为:

图 11 Q值更新

为了提高性能,我们优化实现为增量式更新期望。

图 12 增量式更新

2.2.4 训练agent

训练方法设置如下,在每个迭代里面存储过往的数据到episode,并最后更新状态价值。由于初始的获胜率较低,我们在迭代过程中逐步降低epsilon,以在初期explore,后期exploit。

图 13 训练方法

2.2.5 测试agent

我们定义main方法,用于测试并为比较后续不同策略的agent表现。

图 14 main方法

在测试方法test_agent中,我们采取模型认为的最优策略进行游戏,测试10000局并统计游戏结果,计算模型胜率。

图 15 测试方法

执行结果如下,我们训练10万次后再测试1万次。并且统计每1万次的结局分布。不难发现结局为“庄家爆牌”的概率随着训练次数的增加而不断增加。

图 16 蒙特卡洛代理测试结果

我们可以看到庄家在小于20点持续拿牌的固定策略会导致庄家爆牌的概率极大,但是在不爆牌的情况下,庄家牌值大于玩家牌值的概率较大。综合两者,在多次测试后,可知蒙特卡洛代理的胜率可达66%

2.2.6 效果分析

为了便于分析,我们编写一个三维可视化的工具函数,主要绘制三幅图:

  1. x、y轴分别表示“庄家初始牌值”,“玩家牌值”,纵轴z轴表示选择第0个动作Action.STICK)的价值
  2. 平面的x、y轴分别表示“庄家初始牌值”,“玩家牌值”,纵轴z轴表示选择第1个动作Action.HIT)的价值
  3. 平面的x、y轴分别表示“庄家初始牌值”,“玩家牌值”,纵轴z轴表示选择两个动作的平均价值

主要代码如下:

图 17 可视化比较

呈现效果如下:

图 18 三图比较

下面我们逐个分析:

  • Action.Stick:操作的q值均为正,当牌值逼近21的时候,q值可达到0.8附近,由于+1为胜利的奖励,这也预示着此时胜利概率极大。而由于庄家采取的是低于20牌值持续拿牌的激进策略(容易爆牌)。这意味着选择一个适中的牌值就停止拿牌是一个好的策略。
图 19 Action Stick

  • Action.HIT:操作中Q值存在一些负值,尤其是玩家牌值接近20时,此时拿牌大概率会爆牌,故接近失败的惩罚-1。而在初始牌值小于10的时候,颜色均为浅绿色,此时的agent拿牌会得到一定的奖励。
图 20 Action Hit
  • 平均价值:
    • 对比庄家牌轴后,可知在本次实验环境下,仅依靠庄家的初始牌的信息,对玩家决策的意义较小。
    • 当玩家牌值约为10时,此时价值较高。牌值从17到20,风险高,Q值较低。
图 21 平均状态价值

最后通过FuncAnimation库函数实现每隔1000次训练记录,总计100帧的gif。可以看到,随着时间迭代,agent采取单个动作的q_value坡度会渐渐变得平缓。而由于HIT与STICK方法在逼近21点牌值后的决策结果会有较大的不同,所以导致平均价值即便在后期有锯齿状的表面。(相较后续的TD方法,收敛十分平缓。)

图 22 随时间迭代的q_value变化

2.3 Sarsa代理

2.3.1 算法过程

State-Action-Reward-State-Action这个名称清楚地反应了其学习更新函数依赖的5个值,分别是当前状态S1,当前状态选中的动作A1,获得的奖励Reward,S1状态下执行A1后取得的状态S2及S2状态下将会执行的动作A2。

这是一种在线更新Q值的算法,算法流程大致如下:

图 23 Sarsa算法流程

其中在每个episode中,都通过episilon贪心策略选择一个动作,并通过G乘以α(学习率)来更新状态价值Q,重复步骤直到收敛。这里的预期回报G是单步TD0,即只考虑未来一步收益的。

2.3.2 训练agent

显然,Sarsa代理的最佳决策依旧是选择最优的Q值,而与蒙特卡洛不同只是更新方法。故这里仅展示Sarsas的核心代码,不再赘述相同部分。

如下所示,为依据上述算法流程实现的训练代码。需要注意的是,当这个状态是最后一个状态时,我们需要判断是否为结束,并且去除公式中下一个状态的Q值。

图 24 训练代码

我们依据公式:Q(S,A)\gets Q(S,A)+\alpha[R+\gamma Q(S^\prime,A^\prime)-Q(S,A)]

实现如下更新Q值函数:

图 25 Q值更新函数

2.3.3 效果分析

依据上述相同方法,训练10万次并每隔1万次记录对局结果。结果如下:Sarsa的胜率约为0.63,比MC方法(0.66)稍低一点。但是联合MC方法的测试结果可知,胜利原因大部分是因为庄家爆牌而引起。

图 26 测试结果

同MC方法进行可视化,可以得到动作STICK、HIT以及平均的状态价值图。

图 27 可视化图像

由上图可知,

  1. 动作STICK和HIT的最优价值分布的牌值区间恰好相反:
    1. 对于STICK操作而言,牌值越小,STICK奖励越低。牌值接近21时,STICK操作价值越高。
    2. 对于HIT操作而言,牌值越大,HIT奖励越低。牌值越小,HIT操作价值越高。
  2. 两者均在牌值约为12的情况下,产生较大的价值差异。分析可知,当牌值取得12时,HIT操作就有可能溢出。
  3. 从平均结果来看,保持牌值在11以下的平均价值大于高牌值的情况。
  4. 相比于MC方法的可视化图像,Sarsa方法的价值平面明显更加平滑

我们取100帧(每帧迭代训练1000次),fps=5的图像叠加为gif查看价值函数的动态收敛过程,除去平均结果外,但看动作STICK与HIT都可清晰地观测到其中变化幅度较大。

图 28 动态收敛过程

2.4 Q-learning代理

2.4.1 算法流程

和Sarsa类似,q-learning也是单步TD方法,但不同的是,它是离线学习的,通过选择当前状态下价值最大的动作来更新Q值。更新公式中使用了max操作。核心公式如下:

Q(S,A)\leftarrow Q(S,A)+\alpha[R+\gamma{\max_{a}Q(S^{\prime},a)}|-Q(S,A)]

算法流程如下图所示:

图 29 q-learning算法

2.4.2 Q值更新

依据上述公式,我们在Sarsa代理的基础上修改值更新部分。核心的“Q值更新”实现如下:

图 30 Q-learning值更新

2.4.3 效果分析

同理,我们测试了Q-learning代理对局结果如下:其胜率为0.6378,与Sarsa代理大致相当。

图31 对局结果

不同动作的价值函数可视化部分如下:大致分布也与Sarsa代理相同。可知在两者收敛的情况下,Q-learningSarsa代理实现的策略与效果都是相当的

图 32 Q-learning动作价值呈现

观察其收敛过程(1000次训练记录一帧,共100帧),QLearning的迭代过程变化幅度同Sarsa方法,比MC方法更加剧烈。

图33 q-learning迭代过程

三. 对比分析

3.1 胜率分析

通过wandb可视化三种代理的胜率情况,我们设置每隔1000次训练进行一次测试,,一共进行100轮。(总计10万次训练)每次测试通过1000次游戏来获取胜率。结果如下:

图 34 胜率对比1

由图可知,胜率较快进入收敛情况,我们采取Smooth可知MC与TD方法的趋势。其中MC方法越到后面(训练10万次后)仍有提升胜率的趋势,而Q-learning与Sarsa方法反而有胜率降低的趋势。(有可能陷入局部最优解。)

图 35 胜率对比(Smooth)

我们缩小训练步长,调整为每隔100次记录1点。得到曲线如下:可以看到,在小规模情况下的三种代理的胜率具有一定的提升,但是幅度较少。

图 36 1万次训练的胜率趋势

3.2 均方误差对比

我们将三种代理两两比较Q值的均方差,得到三条曲线如下:

图 37 均方差对比

红色为sarsa与qlearning的均方差对比,初始两者相似,随着训练两者均方差有略微提升,后期又会降低。而橙色和蓝色的曲线分别为sarsa、qlearning与mc方法的均方差,初始差异较大,但是后期随着训练增大,也渐渐收敛趋于一致。

3.3 总结

本次实验所应用的三种策略Q-learning、Sarsa和蒙特卡洛都是解决强化学习问题的算法,它们在学习过程中都通过与环境的交互来优化策略。且都用于值函数估计,这三种算法的目标都是学习状态或状态动作对的值函数,即Q值或V值。

区别:

  • 更新方式不同:

Q-learning: 使用了离线学习的方式,通过选择当前状态下值最大的动作来更新Q值。更新公式中使用了max操作

Sarsa: 使用在线学习的方式,通过选择当前状态下的某个动作来更新Q值。更新公式中使用了当前实际选择的动作

蒙特卡洛: 通过整个回合(episode)的经验来更新值函数,它直接使用了整个回合的累积奖励。

  • 探索策略不同:

Q-learning和Sarsa: 使用ε-greedy策略进行探索,以一定概率随机选择动作,以概率1-ε选择当前估计值最高的动作。

蒙特卡洛: 通过在整个回合内的探索来学习。

  • 适用场景不同:

Q-learning: 适用于离散状态和动作的问题,能够在未知模型的情况下学习最优策略。

Sarsa: 同样适用于离散状态和动作的问题,但由于使用在线学习,更适合实时决策。

蒙特卡洛: 适用于离散或连续状态和动作的问题,更擅长处理整个回合的经验。

四. 最终代码

https://github.com/YYForReal/ML-DL-RL-Learning/tree/main/RL-Learning/MC_TD_S21

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226446.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spark精讲】一文讲透Spark RDD

MapReduce的缺陷 MR虽然在编程接口的种类和丰富程度上已经比较完善了&#xff0c;但这些系统普遍都缺乏操作分布式内存的接口抽象&#xff0c;导致很多应用在性能上非常低效 。 这些应用的共同特点是需要在多个并行操 作之间重用工作数据集 &#xff0c;典型的场景就是机器学习…

Vue(一):Vue 入门与 Vue 指令

Vue 01. Vue 快速上手 1.1 Vue 的基本概念 用于 构建用户界面 的 渐进性 框架 构建用户界面&#xff1a;基于数据去渲染用户看到的界面渐进式&#xff1a;不需要学习全部的语法就能完成一些功能&#xff0c;学习是循序渐进的框架&#xff1a;一套完整的项目解决方案&#x…

Django Cookie和Session使用(十一)

一、Cookie Cookie具体指一小段信息&#xff0c;它是服务器发送出来存储在浏览器上的一组键值对&#xff0c;下次访问服务器时浏览器会自动携带这些键值对&#xff0c;以便服务器提取有用信息。 Cookie的特性 1、服务器让浏览器进行设置的 2、保存在浏览器本地&#xff0c;…

linux 网络工具(二)

linux 网络工具 1. ip命令簇4.1 address4.2 link4.3 route4.4 rule 2. 其他常用命令2.1 ifup/ifdown2.2 配置主机名2.3 设置DNS服务器指向2.4 配置域名解析2.5 ss2.6 路由相关配置文件2.7 查看机器可用端口2.8 traceroute2.9 dhclient 1. ip命令簇 Linux的ip命令和ifconfig类似…

微信小程序picker组件扩展选择时间到秒插件

创建插件seldatetime // 插件JS部分 Component({// 一些选项options: {// 样式隔离&#xff1a;apply-shared 父影响子&#xff0c;shared父子相互影响&#xff0c; isolated相互隔离styleIsolation:"isolated",// 允许多个插槽multipleSlots: true},// 组件的对外属…

机器学习三要素与拟合问题

1.如何构建机器学习模型&#xff1f; 机器学习工作流程总结 1.获取数据 2.数据基本处理 3.特征工程 4.机器学习(模型训练) 5.模型评估 结果达到要求&#xff0c;上线服务&#xff0c;没有达到要求&#xff0c;重新上面步骤 我们使用机器学习监督学习分类预测模型的工作流…

SLF4J: Class path contains multiple SLF4J bindings.解决

背景 项目正常运行几年&#xff0c;近期优化调整修复漏洞&#xff0c;依赖升级后cleaninstall 重启发现项目启动失败&#xff0c;访问所有接口都报错404 错误信息 output输出异常信息截图 tomcat 打印异常信息截图 output打印异常信息详情 D:\javaRuanJian\Tomcat\apach…

人工智能的新篇章:深入了解大型语言模型(LLM)的应用与前景

LLM&#xff08;Large Language Model&#xff09;技术是一种基于深度学习的自然语言处理技术&#xff0c;旨在训练能够处理和生成自然语言文本的大型模型。 LLM 技术的核心思想是使用深度神经网络&#xff0c;通过大规模的文本数据预训练模型&#xff0c;并利用这些预训练模型…

linux 防火墙查看放行端口,追加放行端口命令

linux 查看防火墙已经放行端口列表 firewall-cmd --list-ports 运行结果如下&#xff1a; linux 追加防火墙经放行端口&#xff08;如追加443&#xff09; firewall-cmd --zonepublic --add-port443/tcp --permanent 亲测有效&#xff01;

【WPF.NET开发】路由事件

本文内容 先决条件什么是路由事件&#xff1f;路由策略为什么使用路由事件&#xff1f;附加并实现路由事件处理程序类处理程序WPF 中的附加事件XAML 中的限定事件名称WPF 输入事件EventSetter 和 EventTrigger Windows Presentation Foundation (WPF) 应用程序开发人员和组件…

FileZilla的使用主动模式与被动模式

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《产品经理如何画泳道图&流程图》 ⛺️ 越努力 &#xff0c;越幸运 目录 一、FileZilla简介 1、FileZilla是什么&#xff1f; 2、FileZilla的应用场景 二、FileZilla的安装 1、下…

【直播预告】刘军博士:科学研究中的AI计算:何助力团队协作创新

【直播预告】随着数据、算法、算力的融合发展&#xff0c;AI已经成为科学和工程研究的不可或缺的力量&#xff0c;涉足药物设计、天气预测、新材料研发等领域。在AI领域&#xff0c;协作是关键。欢迎大家关注12月28日20:00九章云极资深数据科学家刘军博士的直播&#xff01;刘军…

HLS 2017.4 导出 RTL 报错:ERROR: [IMPL 213-28] Failed to generate IP.

软件版本&#xff1a;HLS 2017.4 在使用 HLS 导出 RTL 的过程中产生如下错误&#xff1a; 参考 Xilinx 解决方案&#xff1a;https://support.xilinx.com/s/article/76960?languageen_US 问题描述 DESCRIPTION As of January 1st 2022, the export_ip command used by Vivad…

【计算机视觉】角点检测(Harris、SIFT)

Harris 角点指的是窗口延任意方向移动&#xff0c;都有很大变化量的点。 用数学公式表示为&#xff1a; E(u,v)反映的移动后窗口的差异&#xff0c;w(x,y)为每个像素的点权值&#xff0c;I(xu,yv)是移动的像素值&#xff0c;I(x,y)是移动前的像素值。 将E(u,v)进行泰勒展开&am…

MySQL进阶之(一)逻辑架构

一、逻辑架构 1.1 逻辑架构剖析1.1.1 连接层1.1.2 服务层01、基础服务组件02、SQL Interface&#xff1a;SQL 接口03、Parser&#xff1a;解析器04、Optimizer&#xff1a;查询优化器05、Caches & Buffers&#xff1a; 查询缓存组件 1.1.3 引擎层1.1.4 存储层1.1.5 总结 1.…

elasticsearch系列九:异地容灾-CCR跨集群复制

概述 起初只在部分业务中采用es存储数据&#xff0c;在主中心搭建了个集群&#xff0c;随着es在我们系统中的地位越来越重要&#xff0c;数据也越来越多&#xff0c;针对它的安全性问题也越发重要&#xff0c;那如何对es做异地容灾呢&#xff1f; 今天咱们就一起看下官方提供的…

25、商城系统(七):商城项目基础功能pom.xml(重要),mybatis分页插件

截止这一章,我们就不把重心放在前端,后台的基础代码,因为后面都是业务层面的crud。 前端直接替换这两个文件夹即可,后台代码也直接复制: 一、重新更新一下所有的pom.xml 这个地方我踩了好多坑,最后得到一个完整的pom.xml,建议大家直接用我的pom.xml替换即可。 1.comm…

大数据与人工智能|万物皆算法(第三节)

要点一&#xff1a;数据与智能的关系 1. 一切的核心都是数据&#xff0c;数据和智能之间是密切相关的。 数据是对客观现实的描述&#xff0c;而信息是数据转化而来的。 例如&#xff0c;24是数据&#xff0c;但说“今天的气温是24摄氏度”是信息&#xff0c;而说“班可以分成24…

How to Develop Word Embeddings in Python with Gensim

https://machinelearningmastery.com/develop-word-embeddings-python-gensim/ 本教程分为 6 个部分;他们是&#xff1a; 词嵌入 Gensim 库 开发 Word2Vec 嵌入 可视化单词嵌入 加载 Google 的 Word2Vec 嵌入 加载斯坦福大学的 GloVe 嵌入 词嵌入 单词嵌入是一种提供单词的…

web自动化(4)——POM设计重构

1. 什么是POM Page Object Model 是ui自动化测试中常见的封装方式。 原理&#xff1a;将页面封装为PO对象&#xff0c;然后通过面向对象的方式实现UI自动化 2. 封装原则 PO无需包含全部UI元素PO应当验证元素PO不应该包含断言PO不应该暴露元素 3. 怎么进行POM封装 面向对象…