图像分割-Grabcut法(C#)

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

本文的VB版本请访问:图像分割-Grabcut法-CSDN博客

GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免边界处的像素被错误地分类。GrabCut算法在图像分割中有着广泛的应用,例如人像分割、物体抠图等。

EmguCV使用CvInvoke.GrabCut方法来执行GrabCut算法,该方法声明如下:

public static void GrabCut(

           IInputArray img,

                    IInputOutputArray mask,

                    Rectangle rect,

                    IInputOutputArray bgdModel,

                    IInputOutputArray fgdModel,

                    int iterCount,

                   GrabcutInitType type

)

参数说明:

  1. img:输入输出的图像,必须是三通道彩色图像。
  2. mask:指定的掩码图像,必须是单通道灰度图像,并且与输入图像具有相同的尺寸。可以传入0-3的值,分别为:0表示明显为背景的像素、1表示冥相位前景的像素、2表示可能为背景的像素、3表示可能为前景的像素。
  3. rect:指定的矩形框,用于定位大概率可能为前景目标的位置。
  4. bgdModel:背景模型,必须是单通道浮点型Mat。
  5. fgdModel:前景模型,必须是单通道浮点型Mat。
  6. iterCount:迭代次数,用于控制算法的收敛性。
  7. type:GrabCut算法初始化类型,可以选择GrabCutInitType.WithRect或GrabCutInitType.WithMask,分别表示根据提供的矩形初始化或根据掩码初始化。

该方法没有返回值,而是直接在mask图像上进行前景分割操作,最终获得的mask包含0-3的值,含义如参数中说明。

        //Grabcut法 private void Button5_Click(object sender, EventArgs e){Mat m = new Mat("C:\\learnEmgucv\\tower.jpg", ImreadModes.AnyColor);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 1, GrabcutInitType.InitWithRect);//输出的result只有4个值://0:确定背景//1:确定前景//2:可能背景//3:可能前景//演示框选范围CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);ImageBox1.Image = m;//标记区域Matrix<byte> matr = new Matrix<byte>(result.Rows, result.Cols);result.CopyTo(matr);for (int i = 0; i < matr.Cols; i++){for (int j = 0; j < matr.Rows; j++){//将确定背景和可能背景标记为0,否则为255if (matr[j, i] == 0 || matr[j, i] == 2)matr[j, i] = 0;elsematr[j, i] = 255;}}Mat midm = new Mat();midm = matr.Mat;//显示标记的图像CvInvoke.Imshow("midm", midm);//灰度转为彩色Mat midm1 = new Mat();CvInvoke.CvtColor(midm, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();//And运算CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-5 Grabcut法分离前景

       //Grabcut法 private void Button6_Click(object sender, EventArgs e){Mat m = CvInvoke.Imread("C:\\learnEmgucv\\tower.jpg", ImreadModes.Color);Mat result = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 680, 450);CvInvoke.GrabCut(m, result, rect, bg, fg, 5, GrabcutInitType.InitWithRect);Image<Bgr, byte> src = m.ToImage<Bgr, byte>();Image<Bgr, byte> dst = new Image<Bgr, byte>(new Size(src.Width, src.Height));Image<Gray, byte> mask = result.ToImage<Gray, byte>();//直接操作Image像素点for (int i = 0; i < src.Rows; i++){for (int j = 0; j < src.Cols; j++){//如果是确定前景和可能前景,直接保留原像素点颜色,否则为黑色if (mask.Data[i, j, 0] == 1 || mask.Data[i, j, 0] == 3){dst.Data[i, j, 0] = src.Data[i, j, 0];dst.Data[i, j, 1] = src.Data[i, j, 1];dst.Data[i, j, 2] = src.Data[i, j, 2];}else{dst.Data[i, j, 0] = 0;dst.Data[i, j, 1] = 0;dst.Data[i, j, 2] = 0;}}}ImageBox1.Image = dst;}

输出结果如下图所示:

图8-6 Grabcut法分离前景

      //标记为确定前景,这里使用InitWithMask 参数private void Button7_Click(object sender, EventArgs e){Mat m = new Mat("c:\\learnEmgucv\\lena.jpg", ImreadModes.AnyColor);Mat mask = new Mat();Mat bg = new Mat();Mat fg = new Mat();Rectangle rect = new Rectangle(80, 30, 340, 480);//使用前景为全白色Mat m1 = new Mat("c:\\learnEmgucv\\lena_fillwhite.jpg", ImreadModes.Grayscale);Mat mask1 = new Mat();//二值化CvInvoke.Threshold(m1, mask1, 250, 1, ThresholdType.Binary);CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);//标记之后再调用GrabCut,使用InitWithMask参数CvInvoke.GrabCut(m, mask1, rect, bg, fg, 2, GrabcutInitType.InitWithMask);Matrix<byte> matrx = new Matrix<byte>(mask1.Rows, mask1.Cols);mask1.CopyTo(matrx);for (int i = 0; i < matrx.Cols; i++)for (int j = 0; j < matrx.Rows; j++)if (matrx[i, j] == 0 || matrx[i, j] == 2)matrx[i, j] = 0;elsematrx[i, j] = 255;Mat midm2 = new Mat();midm2 = matrx.Mat;Mat midm1 = new Mat();CvInvoke.CvtColor(midm2, midm1, ColorConversion.Gray2Bgr);Mat mout = new Mat();CvInvoke.BitwiseAnd(m, midm1, mout);CvInvoke.Imshow("mout", mout);}

输出结果如下图所示:

图8-7 Grabcut法分离前景

由于.net平台下C#和vb.NET很相似,本文也可以为C#爱好者提供参考。

学习更多vb.net知识,请参看vb.net 教程 目录

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233222.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python | 基于Mediapipe框架的手势识别系统

一、项目要求 1、题目 本题着力于解决会商演示系统中的非接触式人机交互问题&#xff0c;具体而言&#xff0c;其核心问题就是通过计算机视觉技术实现对基于视频流的手势动作进行实时检测和识别。通过摄像头采集并识别控制者连续的手势动作&#xff0c;完成包括点击、平移、缩放…

小白入门基础 - Restful

一&#xff1a;REST与RESTful&#xff1a; REST&#xff1a;表现层状态转移&#xff0c;资源在网络中以某种形式进行状态转移。 RESTful是基于REST理念的一套开发风格&#xff0c;是具体的开发规则。 服务器端只返回数据&#xff0c;以json或者xml的格式。 RESTful开发规范&a…

【大数据】Spark学习笔记

初识Spark Spark和Hadoop HadoopSpark起源时间20052009起源地MapReduceUniversity of California Berkeley数据处理引擎BatchBatch编程模型MapReduceResilient distributed Datesets内存管理Disk BasedJVM Managed延迟高中吞吐量中高优化机制手动手动APILow levelhigh level流…

MySQL之视图外连接、内连接和子查询的使用

目录 一、视图 1.1 含义 1.2 操作 1.3 SQL数据 二、连接查询案例 &#xff08;1&#xff09;查询" 01 "课程比" 02 "课程成绩高的学生的信息及课程分数 &#xff08;2&#xff09;查询同时存在" 01 "课程和" 02 "课程的情况 &a…

docker安裝gocd-server,并配置gitlab授权登录

gocd的地址&#xff1a;Installing GoCD server on Windows | GoCD User Documentation gocd文档&#xff1a;GitHub - gocd/docker-gocd-server: Docker server image for GoCD 一、docker拉取gocd镜像 #拉取server镜像 docker pull gocd/gocd-server:v21.1.0docker pull g…

java SSM水质历史数据可视化设计myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM水质历史数据可视化设计是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主…

QT常用控件使用及布局

QT常用控件使用及布局 文章目录 QT常用控件使用及布局1、创建带Ui的工程2、ui界面介绍1、界面设计区2、对象监视区3、对象监属性编辑区4、信号与槽5、布局器6、控件1、Layouts1、布局管理器2、布局的dome 2、Spacers3、Buttons4、项目视图组(Item Views)5、项目控件组(Item Wid…

“数据要素×”正式来袭|美创“全栈能力、深入场景”保障数据价值安全释放

千呼万唤&#xff0c;1月4日&#xff0c;国家数据局等17部门联合印发的《“数据要素”三年行动计划&#xff08;2024—2026年&#xff09;》&#xff08;下称《三年行动计划》&#xff09;正式发布&#xff01; 作为国家数据局成立以来公开发布的首个重磅文件&#xff0c;《三年…

大数据StarRocks(四) :常用命令

这次主要介绍生产工作中使用Starrocks时的常用命令 4.1 连接StarRocks 4.1.1 Linux命令行连接 [roothadoop1011 fe]# yum install mysql -y [roothadoop1011 fe]# mysql -h hadoop101 -uroot -P9030 -p4.1.2 Windows客户端 DBeaver 连接 4.2 常用命令 4.2.1 查看状态 1. 查…

uniapp获取手机当前信息及应用版本

appVersion 是app端查询的数据信息 appWgtVersion 是浏览器端查询的数据信息 onLoad() {const systemInfo uni.getSystemInfoSync();console.log(systemInfo);// #ifdef H5const uniAppVersion systemInfo.appVersion;// #endif// #ifndef H5const uniAppVersion systemIn…

案例分享:Qt多国语言输入法软键盘

若该文为原创文章&#xff0c;转载请注明出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/135346374 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结…

vue-springboot基于java的实验室安全考试系统

本系统为用户而设计制作实验室安全考试系统&#xff0c;旨在实现实验室安全考试智能化、现代化管理。本实验室安全考试管理自动化系统的开发和研制的最终目的是将实验室安全考试的运作模式从手工记录数据转变为网络信息查询管理&#xff0c;从而为现代管理人员的使用提供更多的…

模板管理支持批量操作,DataEase开源数据可视化分析平台v2.2.0发布

2024年1月8日&#xff0c;DataEase开源数据可视化分析平台正式发布v2.2.0版本。 这一版本的功能升级包括&#xff1a;在“模板管理”页面中&#xff0c;用户可以通过模板管理的批量操作功能&#xff0c;对已有模板进行快速重新分类、删除等维护操作&#xff1b;数据大屏中&…

大数据 - Doris系列《二》- Doris安装(亲测成功版)

目录 &#x1f436;2.1 安装前准备 &#x1f959;1.设置系统最大文件打开句柄数 >启动一个程序的时候&#xff0c;打开文件的数量就是句柄数 &#x1f959;2.设置文件包含限制一个进程可以拥有的VMA(虚拟内存区域)的数量 &#x1f959;3.时钟同步 &#x1f959;4.关闭交…

labelImg的安装与使用

目录 1、查看本机是否安装labelImg 2、安装labelImg 3、创建自己的数据集 3.1 建立新文件夹 3.2 打开labelImg 注意&#xff1a;出现闪退的情况处理。 4、文件格式转换 4.1 修改文件夹路径 4.2 新建datasets文件夹 4.3 修改图片路径 4.4 执行 1、查看本机是否安装la…

uniCloud 云函数

相对于云函数&#xff0c;官方更推荐使用 云对象 新建云函数 编辑云函数 uniCloud-aliyun/cloudfunctions/hello_func/index.js use strict; exports.main async (event, context) > {let {name} eventreturn 你好&#xff0c;${name}! };云函数接收的参数从event中解构获…

部署可道云网盘的一个漏洞解决

目录 1漏洞展示 2.防范措施 1漏洞展示 因为可道云网盘的上传文档有保存在 /data/Group/public/home/文档/ 中,当别有用心之人知道个人部署的域名与上次的文件后&#xff0c;可以进行访问拿到uid。例我在我部署的网盘上上次一个aa.php 文件&#xff0c;然后拿来演示 然后通过…

密码学中的Hash函数

目录 一. 介绍 二. hash函数的五个基本性质 &#xff08;&#xff11;&#xff09;压缩性 &#xff08;&#xff12;&#xff09;正向计算简单性 &#xff08;&#xff13;&#xff09;逆向计算困难性 &#xff08;&#xff14;&#xff09;弱无碰撞性 &#xff08;&…

RabbitMQ(八)消息的序列化

目录 一、为什么需要消息序列化&#xff1f;二、常用的消息序列化方式1&#xff09;Java原生序列化&#xff08;默认&#xff09;2&#xff09;JSON格式3&#xff09;Protobuf 格式4&#xff09;Avro 格式5&#xff09;MessagePack 格式 三、总结 RabbitMQ 是一个强大的消息中间…

安全基础~信息搜集3

文章目录 知识补充APP信息搜集php开发学习理解漏洞 知识补充 端口渗透总结 python Crypto报错&#xff1a;https://blog.csdn.net/five3/article/details/86160683 APP信息搜集 1. AppInfoScanner 移动端(Android、iOS、WEB、H5、静态网站)信息收集扫描工具 使用教程 演示&…