leetcode第365题:水壶问题

有两个水壶,容量分别为 jug1Capacity 和 jug2Capacity 升。水的供应是无限的。确定是否有可能使用这两个壶准确得到 targetCapacity 升。

如果可以得到 targetCapacity 升水,最后请用以上水壶中的一或两个来盛放取得的 targetCapacity 升水。

你可以:

  • 装满任意一个水壶
  • 清空任意一个水壶
  • 从一个水壶向另外一个水壶倒水,直到装满或者倒空

示例 1:

输入: jug1Capacity = 3, jug2Capacity = 5, targetCapacity = 4
输出: true
解释:来自著名的 “Die Hard”

示例 2:

输入: jug1Capacity = 2, jug2Capacity = 6, targetCapacity = 5
输出: false

示例 3:

输入: jug1Capacity = 1, jug2Capacity = 2, targetCapacity = 3
输出: true

提示:

1 < = jug1Capacity, jug2Capacity, targetCapacity < = 106

方法一:深度优先搜索

思路及算法

首先对题目进行建模。观察题目可知,在任意一个时刻,此问题的状态可以由两个数字决定:X 壶中的水量,以及 Y 壶中的水量。

在任意一个时刻,我们可以且仅可以采取以下几种操作:

  • 把 X 壶的水灌进 Y 壶,直至灌满或倒空;
  • 把 Y 壶的水灌进 X 壶,直至灌满或倒空;
  • 把 X 壶灌满;
  • 把 Y 壶灌满;
  • 把 X 壶倒空;
  • 把 Y 壶倒空。

水壶问题是一个经典的数学问题,给定两个水壶的容量x和y,需要判断是否能够通过倒水的方式,将其中一个水壶中的水量准确地测量为z升。

代码中的_gen_states函数用于生成所有可能的状态。每个状态都是一个元组,表示两个水壶中的水量。函数中列举了六种可能的状态:

  • 清空A杯:将A杯中的水倒空,即(0, b)
  • 清空B杯:将B杯中的水倒空,即(a, 0)
  • 把A杯装满:将A杯装满,即(x, b)
  • 把B杯装满:将B杯装满,即(a, y)
  • 把A杯倒入B杯,直到B杯满:将A杯中的水倒入B杯,直到B杯满。如果倒入后A杯中的水量加上B杯中的水量小于B杯的容量,那么状态为(0, a + b),否则状态为(a + b - y, y)。
  • 把B杯倒入A杯,直到A杯满:将B杯中的水倒入A杯,直到A杯满。如果倒入后A杯中的水量加上B杯中的水量小于A杯的容量,那么状态为(a + b, 0),否则状态为(x, a + b - x)。

canMeasureWater函数使用BFS搜索状态空间,判断是否存在解。首先判断特殊情况,如果z小于0或者x和y的和小于z,那么肯定无法得到z升水量,直接返回False。然后使用队列q进行BFS,初始状态为0,表示两个水壶都是空的。使用集合visited记录已经访问过的状态,初始时将0加入visited。在BFS过程中,每次从队列中取出当前节点current_sum,如果current_sum等于z,那么找到了解,返回True。否则,根据current_sum生成下一层可能的状态,并判断是否已经访问过,如果没有访问过,则将其加入visited并加入队列q。如果遍历完所有可能的状态,仍然没有找到解,那么返回False。

在主函数中,创建了一个Solution对象sol,并分别调用了三个示例的测试用例。输出结果为True、False、True,分别表示第一个和第三个测试用例存在解,而第二个测试用例不存在解。

python

import math
import collections# 生成所有可能的状态
def _gen_states(a, b, x, y):return [(0, b),  # 清空A杯(a, 0),  # 清空B杯(x, b),  # 把A杯装满(a, y),  # 把B杯装满(0, a + b) if a + b < y else (a + b - y, y),  # 把A杯倒入B杯,直到B杯满(a + b, 0) if a + b < x else (x, a + b - x)  # 把B杯倒入A杯,直到A杯满]class Solution(object):# 使用BFS搜索状态空间def canMeasureWater(self, x, y, z):if z < 0 or x + y < z:return False# 使用队列进行BFSq = collections.deque([0])visited = {0}while len(q):# 当前节点处理current_sum = q.popleft()if current_sum == z:return True# 生成下一层节点states = _gen_states(current_sum, y - current_sum, x, y)for state in states:if state not in visited:visited.add(state)q.append(sum(state))return Falseif __name__ == '__main__':sol = Solution()print(sol.canMeasureWater(3, 5, 4))print(sol.canMeasureWater(1, 2, 3))print(sol.canMeasureWater(2, 6, 5))

方法二:数学法 - 最大公约数

思路

这是一道关于数论的题目,确切地说是关于裴蜀定理

摘自wiki的定义:
.
对任意两个整数 a、b,设 d是它们的最大公约数。那么关于未知数 x和 y的线性丢番图方程(称为裴蜀等式):
ax+by=m
.
有整数解 (x,y) 当且仅当 m是 d的整数倍。裴蜀等式有解时必然有无穷多个解。

因此这道题可以完全转化为裴蜀定理。还是以题目给的例子x = 3, y = 5, z = 4,我们其实可以表示成3 * 3 - 1 * 5 = 4, 即3 * x - 1 * y = z。我们用a和b分别表示3
升的水壶和5升的水壶。那么我们可以:

  • 倒满a(1)
  • 将a倒到b
  • 再次倒满a(2)
  • 再次将a倒到b(a这个时候还剩下1升)
  • 倒空b(-1)
  • 将剩下的1升倒到b
  • 将a倒满(3)
  • 将a倒到b
  • b此时正好是4升

上面的过程就是3 * x - 1 * y = z的具体过程解释。

也就是说我们只需要求出x和y的最大公约数d,并判断z是否是d的整数倍即可。

JavaScript

/*** @param {number} x* @param {number} y* @param {number} z* @return {boolean}*/
var canMeasureWater = function(x, y, z) {if (x + y < z) return false;if (z === 0) return true;if (x === 0) return y === z;if (y === 0) return x === z;function GCD(a, b) {let min = Math.min(a, b);while (min) {if (a % min === 0 && b % min === 0) return min;min--;}return 1;}return z % GCD(x, y) === 0;
};

实际上求最大公约数还有更好的方式,比如辗转相除法:

def GCD(a, b):if b == 0: return areturn GCD(b, a % b)

复杂度分析

  • 时间复杂度:O(log(max(a,b)))O(log(max(a, b)))O(log(max(a,b)))
  • 空间复杂度:空间复杂度取决于递归的深度,因此空间复杂度为 O(log(max(a,b)))O(log(max(a, b)))O(log(max(a,b)))。
  • 如果将上述过程改成迭代,那么可以降低到O(1)O(1)O(1),也不难

BFS、DFS模板

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/239635.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C练习——杨辉三角

题目&#xff1a; 打印近似杨辉三角&#xff0c;行数n自选 百度找的杨辉三角&#xff0c;参考一下&#xff1a; 解析&#xff1a; 把它的全部元素左对齐&#xff0c;就可以看成近似杨辉三角的样子 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 …… 每个数等于它上方两数…

第一个 OpenGL 程序:旋转的立方体(VS2022 / MFC)

文章目录 OpenGL API开发环境在 MFC 中使用 OpenGL初始化 OpenGL绘制图形重置视口大小 创建 MFC 对话框项目添加 OpenGL 头文件和库文件初始化 OpenGL画一个正方形OpenGL 坐标系改变默认颜色 重置视口大小绘制立方体使用箭头按键旋转立方体深度测试添加纹理应用纹理换一个纹理 …

随笔03 笔记整理

图源&#xff1a;文心一言 关于我的考研与信息安全类博文整理~&#x1f95d;&#x1f95d; 第1版&#xff1a;整理考研类博文~&#x1f9e9;&#x1f9e9; 第2版&#xff1a;提前列出博文链接&#xff0c;以便小伙伴查阅~&#x1f9e9;&#x1f9e9; 第3版&#xff1a;整理We…

SLF4J Spring Boot日志框架

JAVA日志框架 JAVA有好多优秀的日志框架&#xff0c;比如log4j、log4j2、logback、JUL&#xff08;java.util.logging&#xff09;、JCL&#xff08;JAVA Common Logging&#xff09;等等&#xff0c;logback是后起之秀&#xff0c;是Spring Boot默认日志框架。 今天文章的目…

快速了解——逻辑回归及模型评估方法

一、逻辑回归 应用场景&#xff1a;解决二分类问题 1、sigmoid函数 1. 公式&#xff1a; 2. 作用&#xff1a;把 (-∞&#xff0c;∞) 映射到 (0&#xff0c; 1) 3. 数学性质&#xff1a;单调递增函数&#xff0c;拐点在x0&#xff0c;y0.5的位置 4. 导函数公式&#xff1a;f…

【镜像制作】OS云主机镜像的制作——以H3C为例

一、云主机镜像简介 1&#xff0e;云主机镜像 云主机镜像不同于容器镜像&#xff0c;是一个含有引导分区、操作系统以及必要应用的单一文件&#xff0c;可以理解成是对整个系统安装光盘所有数据的克隆文件。云用户在创建和申请云主机时可通过选择不同的镜像来快速获取相应操作…

一文读懂「Prompt Engineering」提示词工程

在了解提示过程之前&#xff0c;先了解一下什么是提示prompt&#xff0c;见最后附录部分 一、什么是Prompt Engingering&#xff1f; 提示工程&#xff08;Prompt Engingering&#xff09;&#xff0c;也被称为上下文提示&#xff08;In-Context Prompting&#xff09;&#x…

Android的setContentView流程

一.Activity里面的mWindow是啥 在ActivityThread的performLaunchActivity方法里面&#xff1a; private Activity performLaunchActivity(ActivityClientRecord r, Intent customIntent) {ActivityInfo aInfo r.activityInfo;if (r.packageInfo null) {r.packageInfo getP…

常见面试题之CSS

CSS3的新特性 新增选择器&#xff1a;:nth-child()、:first-of-type、:last-of-type等 弹性盒子&#xff1a;display: flex 媒体查询&#xff1a;media根据设备的特性和屏幕大小应用不同的样式规则 多列布局&#xff1a;column-count和column-with等属性可以实现将内容分为多…

SpringBoot读取配置文件中的内容

文章目录 1. 读取配置文件application.yml中内容的方法1.1 Environment1.2 Value注解1.3 ConfigurationProperties 注解1.4 PropertySources 注解&#xff0c;获取自定义配置文件中的内容&#xff0c;yml文件需要自行实现适配器1.5 YamlPropertiesFactoryBean 加载 YAML 文件1.…

缓存和数据库一致性

前言&#xff1a; 项目的难点是如何保证缓存和数据库的一致性。无论我们是先更新数据库&#xff0c;后更新缓存还是先更新数据库&#xff0c;然后删除缓存&#xff0c;在并发场景之下&#xff0c;仍然会存在数据不一致的情况&#xff08;也存在删除失败的情况&#xff0c;删除…

软件测试|解决Github port 443 : Timed out连接超时的问题

前言 GitHub是全球最大的开源代码托管平台之一&#xff0c;许多开发者和团队使用它来管理和协作开源项目。但在当下&#xff0c;我们在clone或者提交代码时会经常遇到"GitHub Port 443: Timed Out"错误&#xff0c;这意味着我们的电脑无法建立与GitHub服务器的安全连…

鸿蒙Harmony--AppStorage--应用全局的UI状态存储详解

无所求必满载而归&#xff0c;当你降低期待&#xff0c;降低欲望&#xff0c;往往会得到比较好的结果&#xff0c;把行动交给现在&#xff0c;用心甘情愿的态度&#xff0c;过随遇而安的生活&#xff0c;无论结果如何&#xff0c;都是一场惊喜的获得! 目录 一&#xff0c;定义 …

MySQL单表查询练习题

一、创建表的素材 表名&#xff1a;worker——表中字段均为中文&#xff0c;比如&#xff1a;部门号、工资、职工号、参加工作等 CREATE TABLE worker ( 部门号 int(11) NOT NULL, 职工号 int(11) NOT NULL, 工作时间 date NOT NULL, 工资 float(8,2) NOT NULL, 政治面貌 …

MySQL进阶45讲【1】基础架构:一条SQL查询语句是如何执行的?

1 前言 我们经常说&#xff0c;看一个事儿千万不要直接陷入细节里&#xff0c;应该先鸟瞰其全貌&#xff0c;这样能够帮助你从高维度理解问题。同样&#xff0c;对于MySQL的学习也是这样。平时我们使用数据库&#xff0c;看到的通常都是一个整体。比如&#xff0c;有个最简单的…

uniapp 字母索引列表插件(组件版) Ba-SortList

简介&#xff08;下载地址&#xff09; Ba-SortList 是一款字母索引列表组件版插件&#xff0c;可自定义样式&#xff0c;支持首字母字母检索、首字检索、搜索等等&#xff1b;支持点击事件。 支持首字母字母检索支持首字检索支持搜索支持点击事件支持长按事件支持在uniapp界…

八:分布式锁

1、为什么要使用分布式锁 锁是多线程代码中的概念&#xff0c;只有多任务访问同一个互斥的共享资源时才需要锁。单机应用开发时一般使用synchronized或lock。多线程的运行都是在同一个JVM之下。应用是分布式集群&#xff0c;属于多JVM的工作环境&#xff0c;JVM之间已经无法通过…

STM32 定时器输入捕获2——捕获高电平时长

由上图我们可以知道&#xff0c;高电平时间t2-t1。在代码中&#xff0c;可以记录此时t1的时间然后再记录t2的时间&#xff0c;t2-t1&#xff0c;就是我们所想要的答案。 但是&#xff0c;还有更简单一点点的&#xff0c;当到达t1的时候&#xff0c;我们把定时器清零&#xff0c…

MIT_线性代数笔记:第 26 讲 复矩阵;快速傅里叶变换

目录 复向量 Complex vectors复矩阵 Complex matrices傅里叶变换 Fourier transform快速傅里叶变换 Fast Fourier transform 实矩阵也可能有复特征值&#xff0c;因此无法避免在矩阵运算中碰到复数&#xff0c;本讲学习处理复数矩阵和复向量。 最重要的复矩阵是傅里叶矩阵&…

Linux CentOS 7.6安装JDK详细保姆级教程

一、检查系统是否自带jdk java --version 如果有的话&#xff0c;找到对应的文件删除 第一步&#xff1a;先查看Linux自带的JDK有几个&#xff0c;用命令&#xff1a; rpm -qa | grep -i java第二步:删除JDK&#xff0c;执行命令&#xff1a; rpm -qa | grep -i java | xarg…