C++模板:非类型模板参数、特化以及分离编译

一、非类型模板参数

模板参数分类类型形参与非类型形参
类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称
非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用
namespace bite
{// 定义一个模板类型的静态数组template<class T, size_t N = 10>class array{public:T& operator[](size_t index) { return _array[index]; }const T& operator[](size_t index)const { return _array[index]; }size_t size()const { return _size; }bool empty()const { return 0 == _size; }private:T _array[N];size_t _size;};
}
规定:
1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的
2. 非类型的模板参数必须在编译期就能确认结果

二、特化

2.1场景演示

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板。
// 函数模板 -- 参数匹配
//假设我们有一个日期类并且内部含有运算符重载可以比较日期大小
//以下是博主在vs编译器下进行测试的代码及结果
template<class T>
bool Less(T left, T right)
{return left < right;
}
int main()
{cout << Less(1, 2) << endl; // 可以比较,结果正确Date d1(2022, 7, 7);Date d2(2022, 7, 8);cout << Less(d1, d2) << endl; // 可以比较,结果正确Date* p1 = &d1;Date* p2 = &d2;cout << Less(p1, p2) << endl; // 可以比较,结果错误return 0;
}

通过测试可以看到,正常传入int型和自定义类型的对象,less都可以完成比较从而返回正确的数值,可传入指针最后得到的却是一个错误的结果,时大时小。Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指 针的地址,这就无法达到预期而错误

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化类模板特化。

2.2函数模板特化

函数模板的特化步骤:
1. 必须要先有一个基础的函数模板
2. 关键字template后面接一对空的尖括号<>
3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{return left < right;
}
// 对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{return *left < *right;
}
int main()
{cout << Less(1, 2) << endl;Date d1(2022, 7, 7);Date d2(2022, 7, 8);cout << Less(d1, d2) << endl;Date* p1 = &d1;Date* p2 = &d2;cout << Less(p1, p2) << endl; // 调用特化之后的版本,而不走模板生成了return 0;
}
注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。
bool Less(Date* left, Date* right)
{return *left < *right;
}
该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。

2.3全特化

全特化即是将模板参数列表中所有的参数都确定化。
template<class T1, class T2>
class Data
{
public:Data() { cout << "Data<T1, T2>" << endl; }
private:T1 _d1;T2 _d2;
};//全特化
template<>
class Data<int, char>
{
public:Data() { cout << "Data<int, char>" << endl; }
private:int _d1;char _d2;
};
void TestVector()
{Data<int, int> d1;Data<int, char> d2;
}

2.4偏特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:
template<class T1, class T2>
class Data
{
public:Data() { cout << "Data<T1, T2>" << endl; }
private:T1 _d1;T2 _d2;
};
偏特化有以下两种表现方式:
一、部分特化
将模板参数类表中的一部分参数特化。
// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:Data() { cout << "Data<T1, int>" << endl; }
private:T1 _d1;int _d2;
};

二、参数更进一步的限制

偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。

//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{
public:Data() { cout << "Data<T1*, T2*>" << endl; }private:T1 _d1;T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:Data(const T1& d1, const T2& d2): _d1(d1), _d2(d2){cout << "Data<T1&, T2&>" << endl;}private:const T1& _d1;const T2& _d2;
};
void test2()
{Data<double, int> d1; // 调用特化的int版本Data<int, double> d2; // 调用基础的模板 Data<int*, int*> d3; // 调用特化的指针版本Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

2.5类模板特化应用实例

继续拿less举例:

#include<vector>
#include <algorithm>
template<class T>
struct Less
{bool operator()(const T& x, const T& y) const{return x < y;}
};
int main()
{Date d1(2022, 7, 7);Date d2(2022, 7, 6);Date d3(2022, 7, 8);vector<Date> v1;v1.push_back(d1);v1.push_back(d2);v1.push_back(d3);// 可以直接排序,结果是日期升序sort(v1.begin(), v1.end(), Less<Date>());vector<Date*> v2;v2.push_back(&d1);v2.push_back(&d2);v2.push_back(&d3);// 可以直接排序,结果错误日期还不是升序,而v2中放的地址是升序// 此处需要在排序过程中,让sort比较v2中存放地址指向的日期对象// 但是走Less模板,sort在排序时实际比较的是v2中指针的地址,因此无法达到预期sort(v2.begin(), v2.end(), Less<Date*>());return 0;
}
通过观察上述程序的结果发现,对于日期对象可以直接排序,并且结果是正确的。但是如果待排序元素是指针,结果就不一定正确。因为:sort最终按照Less模板中方式比较,所以只会比较指针,而不是比较指针指向空间中内容,此时可以使用类版本特化来处理上述问题:
// 对Less类模板按照指针方式特化
template<>
struct Less<Date*>
{bool operator()(Date* x, Date* y) const{return *x < *y;}
};
特化之后,在运行上述代码,就可以得到正确的结果。

三、模板分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。
有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:
// test.h
template<class T>
T Add(const T& left, const T& right);
// test.cpp
template<class T>
T Add(const T& left, const T& right)
{return left + right;
}
// main.cpp
#include"a.h"
int main()
{Add(1, 2);Add(1.0, 2.0);return 0;
}

C/C++运行一般会经过:预处理--编译--汇编--链接 几个步骤。

编译就是对程序按照语言特性进行语法、语义的分析,检查无误后生成汇编代码(头文件不参与编译 在编译器对工程中的多个源文件是分离开单独编译的)

链接就是将多个obj文件合并成一个并处理没有解决的地址问题。

 所以有以下两种方法可以解决:

1. 将声明和定义放到一个文件 "xxx.hpp" 里面或者xxx.h其实也是可以的。推荐使用这种。
2. 模板定义的位置显式实例化。这种方法不实用,不推荐使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249705.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux--Shell基础

学习笔记&#xff0c;记录以下课程中关于Linux的Shell基础知识。 黑马程序员linux入门到精通&#xff08;下部分&#xff09;_哔哩哔哩_bilibili 目录 1.编写规范 2.变量 2.1 变量的含义 2.2 变量的定义和使用 2.3 只读变量&#xff08;了解&#xff09; 2.4 接收用户输入…

Github 2024-02-02开源项目日报Top10

根据Github Trendings的统计&#xff0c;今日(2024-02-02统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目6HTML项目2TypeScript项目2C#项目1JavaScript项目1 ChatGPT提示库 创建周期&#xff1a;424 天开…

用Python处理TDC激光测距数据并绘制为图片

用Python处理TDC激光测距数据并绘制为图片 说明一、定义全局变量变二、主函数入口三、处理原始文件数据四、将数据叠加统计生成图片五、额外的辅助函数六、将数据进行各种形式统计叠加七、原始数据形式八、 测试结果 说明 1. 主要是将TDC激光测距数据进行统计叠加并绘制为图片…

【数据结构(C语言)】树、二叉树详解

目录 文章目录 前言 一、树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用 二、二叉树的概念及结构 2.1 二叉树的概念 2.2 二叉树的基本形态 ​编辑2.3 特殊的二叉树 2.4 二叉树的性质 2.5 二叉树的存储结构 三、二叉树的顺序结…

C语言实现12种排序算法

1.冒泡排序 思路&#xff1a;比较相邻的两个数字&#xff0c;如果前一个数字大&#xff0c;那么就交换两个数字&#xff0c;直到有序。 时间复杂度&#xff1a;O(n^2)&#xff0c;稳定性&#xff1a;这是一种稳定的算法。 代码实现&#xff1a; void bubble_sort(int arr[],…

服务攻防-端口协议桌面应用QQWPS等RCEhydra口令猜解未授权检测

知识点&#xff1a; 1、端口协议-弱口令&未授权&攻击方式等 2、桌面应用-社交类&文档类&工具类等 章节点&#xff1a; 1、目标判断-端口扫描&组合判断&信息来源 2、安全问题-配置不当&CVE漏洞&弱口令爆破 3、复现对象-数据库&中间件&…

【Jenkins】配置及使用|参数化|邮件|源码|报表|乱码

目录 一、Jenkins 二、Jenkins环境搭建 1、下载所需的软件包 2、部署步骤 3、其他 三、Jenkins全局设置 &#xff08;一&#xff09;Manage Jenkins——Tools系统管理->全局工具配置分别配置JDK、Maven、Allure、Git&#xff0c;可以配置路径或者直接选择版本安装 1…

判断当前设备是不是安卓或者IOS?

代码(重要点): 当前文件要是 xxx.js文件,就需要写好代码后调用才会执行: // 判断是不是安卓 const isAndroid () > {return /android/.test(navigator.userAgent.toLowerCase()); }// 判断是不是ios const isIOS () > {return /iphone|ipad|ipod/.test(navigator.use…

JUC并发编程01——进程,线程(详解),并发和并行

目录 1.进程和线程的概念及对比1.进程概述 2.线程3.对比 2.并行与并发1.并发2.并行 3.线程详解3.1.创建和运行线程3.1.1.Thread3.1.2.Runnable结合Thread 创建线程3.1.3.Callable 3.2线程方法APIrun startsleep yieldjoininterrupt打断线程打断 park终止模式 daemon不推荐使用的…

Kotlin 协程:用源码来理解 ‘viewModelScope‘

Kotlin 协程&#xff1a;用源码来理解 ‘viewModelScope’ Kotlin 协程是 Kotlin 语言的一大特色&#xff0c;它让异步编程变得更简单。在 Android 开发中&#xff0c;我们经常需要在后台线程执行耗时操作&#xff0c;例如网络请求或数据库查询&#xff0c;然后在主线程更新 UI…

坚持刷题 | 完全二叉树的节点个数

Hello&#xff0c;大家好&#xff0c;我是阿月&#xff01;坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;今天刷&#xff1a;完全二叉树的节点个数 题目 222.完全二叉树的节点个数 代码实现 class TreeNode {int val;TreeNode left, right;public TreeNode(int val) …

Android进阶之路 - ViewPager2 比 ViewPager 强在哪?

我记得前年&#xff08;2022&#xff09;面试的时候有被问到 ViewPager 和 ViewPager2 有什么区别&#xff1f;当时因为之前工作一直在开发售货机相关的项目&#xff0c;使用的技术要求并不高&#xff0c;所以一直没去了解过 ViewPager2~ 去年的时候正好有相关的功能需求&#…

数学建模 - 线性规划入门:Gurobi + python

在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中&#xff0c;人们常常会遇到各种优化问题。例如&#xff0c;在生产经营中&#xff0c;我们总是希望制定最优的生产计划&#xff0c;充分利用已有的人力、物力资源&#xff0c;获得最大的经济效益&#…

pytorch_car_caring 排坑记录

pytorch_car_caring 排坑记录 任务踩坑回顾简单环境问题代码版本问题症状描述解决方法 cuda问题&#xff08;异步问题&#xff09;症状描述解决方法 任务 因为之前那个MPC代码跑出来的效果不理想&#xff0c;看了一天代码&#xff0c;大概看明白了&#xff0c;但要做改进还要有…

R-YOLO

Abstract 提出了一个框架&#xff0c;名为R-YOLO&#xff0c;不需要在恶劣天气下进行注释。考虑到正常天气图像和不利天气图像之间的分布差距&#xff0c;我们的框架由图像翻译网络&#xff08;QTNet&#xff09;和特征校准网络&#xff08;FCNet&#xff09;组成&#xff0c;…

【数睿】数睿常见问题处理

连接器请求地址修改 cat /home/sdata2/tomcat/bin/setenv.sh修改里面的 SYSTEM_URL 为数睿服务实际访问地址 如图所示 连接器执行 异常日志 2024-01-23 18:01:49,586 (conf-file-poller-0) [ERROR - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$Fil…

全链路压测的关键点是什么?

全链路压测是一种重要的性能测试方法&#xff0c;用于评估应用程序或系统在真实生产环境下的性能表现。通过模拟真实用户行为和流量&#xff0c;全链路压测能够全面评估系统在不同负载下的稳定性和性能表现。本文将介绍全链路压测的关键点&#xff0c;以帮助企业更好地理解和应…

Redis核心技术与实战【学习笔记】 - 10.浅谈CPU架构对Redis性能的影响

概述 可能很多人都认为 Redis 和 CPU 的关系简单&#xff0c;Redis 的线程在 CPU 上运行&#xff0c;CPU 快 Reids 处理请求的速度也很快。 其实&#xff0c;这种认知是片面的&#xff0c;CPU 的多核架构及多 CPU 结构&#xff0c;也会影响到 Redis 的性能。如果不了解 CPU 对…

【目标检测】对DETR的简单理解

【目标检测】对DETR的简单理解 文章目录 【目标检测】对DETR的简单理解1. Abs2. Intro3. Method3.1 模型结构3.2 Loss 4. Exp5. Discussion5.1 二分匹配5.2 注意力机制5.3 方法存在的问题 6. Conclusion参考 1. Abs 两句话概括&#xff1a; 第一个真正意义上的端到端检测器最…

实习日志10

1.用户信息 1.1.在用户管理中编辑用户信息 1.2.绑定公司id 1.3.显示在页面 2.修改识别逻辑 2.1.分析 先识别&#xff0c;再判断&#xff0c;清空键把识别结果清空 2.2.写码 修改了发票识别逻辑&#xff0c;略... 3.接高拍仪 3.1.js引入报错 分析&#xff1a; 遇到的错误…