网络编程套接字(2)

TCP

  • 简单的TCP网络程序
    • 服务端创建套接字
  • 服务端绑定
    • 服务端监听
    • 服务端接收连接测试
    • 服务端处理请求
    • 客户端创建套接字
    • 客户端连接服务器
    • 客户端连接服务器
    • 单执行流的服务器
    • 客户端为什么会显示连接成功?
  • 多进程版的TCP网络程序
    • 让孙子进程提供服务
  • 多线程版的TCP网络程序

简单的TCP网络程序

服务端创建套接字

我们将TCP服务器封装成一个类,当我们定义出一个服务器对象后需要马上对服务器进行初始化,而初始化TCP服务器要做的第一件事就是创建套接字。
TCP服务器在调用socket函数创建套接字时,参数设置如下:

协议家族选择AF_INET,因为我们要进行的是网络通信。
创建套接字时所需的服务类型应该是SOCK_STREAM,因为我们编写的是TCP服务器,SOCK_STREAM提供的就是一个有序的、可靠的、全双工的、基于连接的流式服务。
协议类型默认设置为0即可。

class TcpServer
{
public:void InitServer(){//创建套接字_sock = socket(AF_INET, SOCK_STREAM, 0);if (_sock < 0){std::cerr << "socket error" << std::endl;exit(2);}}~TcpServer(){if (_sock >= 0){close(_sock);}}
private:int _sock; //套接字
};

说明一下:

实际TCP服务器创建套接字的做法与UDP服务器是一样的,只不过创建套接字时TCP需要的是流式服务,而UDP需要的是用户数据报服务。
当析构服务器时,可以将服务器对应的文件描述符进行关闭。

服务端绑定

套接字创建完毕后我们实际只是在系统层面上打开了一个文件,该文件还没有与网络关联起来,因此创建完套接字后我们还需要调用bind函数进行绑定操作。
绑定的步骤如下:

定义一个struct sockaddr_in结构体,将服务器网络相关的属性信息填充到该结构体当中,比如协议家族、IP地址、端口号等。

填充服务器网络相关的属性信息时,协议家族对应就是AF_INET,端口号就是当前TCP服务器程序的端口号。在设置端口号时,需要调用htons函数将端口号由主机序列转为网络序列。

在设置服务器的IP地址时,我们可以设置为本地环回127.0.0.1,表示本地通信。也可以设置为公网IP地址,表示网络通信。

如果使用的是云服务器,那么在设置服务器的IP地址时,不需要显示绑定IP地址,直接将IP地址设置为INADDR_ANY即可,此时服务器就可以从本地任何一张网卡当中读取数据。此外,由于INADDR_ANY本质就是0,因此在设置时不需要进行网络字节序的转换。

填充完服务器网络相关的属性信息后,需要调用bind函数进行绑定。绑定实际就是将文件与网络关联起来,如果绑定失败也没必要进行后续操作了,直接终止程序即可。

由于TCP服务器初始化时需要服务器的端口号,因此在服务器类当中需要引入端口号,当实例化服务器对象时就需要给传入一个端口号。而由于我当前使用的是云服务器,因此在绑定TCP服务器的IP地址时不需要绑定公网IP地址,直接绑定INADDR_ANY即可,因此我这里没有在服务器类当中引入IP地址。

class TcpServer
{
public:TcpServer(int port): _sock(-1), _port(port){}void InitServer(){//创建套接字_sock = socket(AF_INET, SOCK_STREAM, 0);if (_sock < 0){std::cerr << "socket error" << std::endl;exit(2);}//绑定struct sockaddr_in local;memset(&local, '\0', sizeof(local));local.sin_family = AF_INET;local.sin_port = htons(_port);local.sin_addr.s_addr = INADDR_ANY;if (bind(_sock, (struct sockaddr*)&local, sizeof(local)) < 0){std::cerr << "bind error" << std::endl;exit(3);}}~TcpServer(){if (_sock >= 0){close(_sock);}}
private:int _sock; //监听套接字int _port; //端口号
};

当定义好struct sockaddr_in结构体后,最好先用memset函数对该结构体进行清空,也可以用bzero函数进行清空。bzero函数也可以对特定的一块内存区域进行清空,bzero函数的函数原型如下:

void bzero(void *s, size_t n);

说明一下:

TCP服务器绑定时的步骤与UDP服务器是完全一样的,没有任何区别。

服务端监听

UDP服务器的初始化操作只有两步,第一步就是创建套接字,第二步就是绑定。而TCP服务器是面向连接的,客户端在正式向TCP服务器发送数据之前,需要先与TCP服务器建立连接,然后才能与服务器进行通信。

因此TCP服务器需要时刻注意是否有客户端发来连接请求,此时就需要将TCP服务器创建的套接字设置为监听状态。
listen函数
参数说明:

sockfd:需要设置为监听状态的套接字对应的文件描述符。
backlog:全连接队列的最大长度。如果有多个客户端同时发来连接请求,此时未被服务器处理的连接就会放入连接队列,该参数代表的就是这个全连接队列的最大长度,一般不要设置太大,设置为5或10即可。
返回值说明:

监听成功返回0,监听失败返回-1,同时错误码会被设置。
服务器监听
TCP服务器在创建完套接字和绑定后,需要再进一步将套接字设置为监听状态,监听是否有新的连接到来。如果监听失败也没必要进行后续操作了,因为监听失败也就意味着TCP服务器无法接收客户端发来的连接请求,因此监听失败我们直接终止程序即可。

#define BACKLOG 5class TcpServer
{
public:void InitServer(){//创建套接字_listen_sock = socket(AF_INET, SOCK_STREAM, 0);if (_listen_sock < 0){std::cerr << "socket error" << std::endl;exit(2);}//绑定struct sockaddr_in local;memset(&local, '\0', sizeof(local));local.sin_family = AF_INET;local.sin_port = htons(_port);local.sin_addr.s_addr = INADDR_ANY;if (bind(_listen_sock, (struct sockaddr*)&local, sizeof(local)) < 0){std::cerr << "bind error" << std::endl;exit(3);}//监听if (listen(_listen_sock, BACKLOG) < 0){std::cerr << "listen error" << std::endl;exit(4);}}
private:int _listen_sock; //监听套接字int _port; //端口号
};

说明一下:
初始化TCP服务器时创建的套接字并不是普通的套接字,而应该叫做监听套接字。为了表明寓意,我们将代码中套接字的名字由sock改为listen
socket。
在初始化TCP服务器时,只有创建套接字成功、绑定成功、监听成功,此时TCP服务器的初始化才算完成。
服务端获取连接
TCP服务器初始化后就可以开始运行了,但TCP服务器在与客户端进行网络通信之前,服务器需要先获取到客户端的连接请求。
accept函数
获取连接的函数叫做accept,该函数的函数原型如下:

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

参数说明:

sockfd:特定的监听套接字,表示从该监听套接字中获取连接。
addr:对端网络相关的属性信息,包括协议家族、IP地址、端口号等。
addrlen:调用时传入期望读取的addr结构体的长度,返回时代表实际读取到的addr结构体的长度,这是一个输入输出型参数。
返回值说明:

获取连接成功返回接收到的套接字的文件描述符,获取连接失败返回-1,同时错误码会被设置。

参数说明:

sockfd:特定的监听套接字,表示从该监听套接字中获取连接。
addr:对端网络相关的属性信息,包括协议家族、IP地址、端口号等。
addrlen:调用时传入期望读取的addr结构体的长度,返回时代表实际读取到的addr结构体的长度,这是一个输入输出型参数。
返回值说明:

获取连接成功返回接收到的套接字的文件描述符,获取连接失败返回-1,同时错误码会被设置。

accept函数返回的套接字是什么?
调用accept函数获取连接时,是从监听套接字当中获取的。如果accept函数获取连接成功,此时会返回接收到的套接字对应的文件描述符。

监听套接字与accept函数返回的套接字的作用:

监听套接字:用于获取客户端发来的连接请求。accept函数会不断从监听套接字当中获取新连接。
accept函数返回的套接字:用于为本次accept获取到的连接提供服务。监听套接字的任务只是不断获取新连接,而真正为这些连接提供服务的套接字是accept函数返回的套接字,而不是监听套接字。
accept函数返回的套接字是什么?
调用accept函数获取连接时,是从监听套接字当中获取的。如果accept函数获取连接成功,此时会返回接收到的套接字对应的文件描述符。

监听套接字与accept函数返回的套接字的作用:

监听套接字:用于获取客户端发来的连接请求。accept函数会不断从监听套接字当中获取新连接。
accept函数返回的套接字:用于为本次accept获取到的连接提供服务。监听套接字的任务只是不断获取新连接,而真正为这些连接提供服务的套接字是accept函数返回的套接字,而不是监听套接字。
服务端获取连接
服务端在获取连接时需要注意:

accept函数获取连接时可能会失败,但TCP服务器不会因为获取某个连接失败而退出,因此服务端获取连接失败后应该继续获取连接。
如果要将获取到的连接对应客户端的IP地址和端口号信息进行输出,需要调用inet_ntoa函数将整数IP转换成字符串IP,调用ntohs函数将端口号由网络序列转换成主机序列。
inet_ntoa函数在底层实际做了两个工作,一是将网络序列转换成主机序列,二是将主机序列的整数IP转换成字符串风格的点分十进制的IP。

class TcpServer
{
public:void Start(){for (;;){//获取连接struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));socklen_t len = sizeof(peer);int sock = accept(_listen_sock, (struct sockaddr*)&peer, &len);if (sock < 0){std::cerr << "accept error, continue next" << std::endl;continue;}std::string client_ip = inet_ntoa(peer.sin_addr);int client_port = ntohs(peer.sin_port);std::cout<<"get a new link->"<<sock<<" ["<<client_ip<<"]:"<<client_port<<std::endl;}}
private:int _listen_sock; //监听套接字int _port; //端口号
};

服务端接收连接测试

现在我们可以做一下简单的测试,看看当前服务器能否成功接收请求连接。在运行服务端时需要传入一个端口号作为服务端的端口号,然后我们用该端口号构造一个服务端对象,对服务端进行初始化后启动服务端即可。

void Usage(std::string proc)
{std::cout << "Usage: " << proc << " port" << std::endl;
}
int main(int argc, char* argv[])
{if (argc != 2){Usage(argv[0]);exit(1);}int port = atoi(argv[1]);TcpServer* svr = new TcpServer(port);svr->InitServer();svr->Start();return 0;
}

编译代码后,以./tcp_server 端口号的方式运行服务端。
服务端运行后,通过netstat命令可以查看到一个程序名为tcp_server的服务程序,它绑定的端口就是8081,而由于服务器绑定的是INADDR_ANY,因此该服务器的本地IP地址是0.0.0.0,这就意味着该TCP服务器可以读取本地任何一张网卡里面的数据。此外,最重要的是当前该服务器所处的状态是LISTEN状态,表明当前服务器可以接收外部的请求连接。
虽然现在还没有编写客户端相关的代码,但是我们可以使用telnet命令远程登录到该服务器,因为telnet底层实际采用的就是TCP协议。

使用telnet命令连接当前TCP服务器后可以看到,此时服务器接收到了一个连接,为该连接提供服务的套接字对应的文件描述符就是4。因为0、1、2是默认打开的,其分别对应标准输入流、标准输出流和标准错误流,而3号文件描述符在初始化服务器时分配给了监听套接字,因此当第一个客户端发起连接请求时,为该客户端提供服务的套接字对应的文件描述符就是4。

服务端处理请求

现在TCP服务器已经能够获取连接请求了,下面当然就是要对获取到的连接进行处理。但此时为客户端提供服务的不是监听套接字,因为监听套接字获取到一个连接后会继续获取下一个请求连接,为对应客户端提供服务的套接字实际是accept函数返回的套接字,下面就将其称为“服务套接字”。

为了让通信双方都能看到对应的现象,我们这里就实现一个简单的回声TCP服务器,服务端在为客户端提供服务时就简单的将客户端发来的数据进行输出,并且将客户端发来的数据重新发回给客户端即可。当客户端拿到服务端的响应数据后再将该数据进行打印输出,此时就能确保服务端和客户端能够正常通信了。
read函数

ssize_t read(int fd, void *buf, size_t count);

参数说明:

fd:特定的文件描述符,表示从该文件描述符中读取数据。
buf:数据的存储位置,表示将读取到的数据存储到该位置。
count:数据的个数,表示从该文件描述符中读取数据的字节数。
返回值说明:

如果返回值大于0,则表示本次实际读取到的字节个数。
如果返回值等于0,则表示对端已经把连接关闭了。
如果返回值小于0,则表示读取时遇到了错误。
read返回值为0表示对端连接关闭
这实际和本地进程间通信中的管道通信是类似的,当使用管道进行通信时,可能会出现如下情况:

写端进程不写,读端进程一直读,此时读端进程就会被挂起,因为此时数据没有就绪。
读端进程不读,写端进程一直写,此时当管道被写满后写端进程就会被挂起,因为此时空间没有就绪。
写端进程将数据写完后将写端关闭,此时当读端进程将管道当中的数据读完后就会读到0。
读端进程将读端关闭,此时写端进程就会被操作系统杀掉,因为此时写端进程写入的数据不会被读取。
这里的写端就对应客户端,如果客户端将连接关闭了,那么此时服务端将套接字当中的信息读完后就会读取到0,因此如果服务端调用read函数后得到的返回值为0,此时服务端就不必再为该客户端提供服务了。
write函数

ssize_t write(int fd, const void *buf, size_t count);

参数说明:

fd:特定的文件描述符,表示将数据写入该文件描述符对应的套接字。
buf:需要写入的数据。
count:需要写入数据的字节个数。
返回值说明:

写入成功返回实际写入的字节数,写入失败返回-1,同时错误码会被设置。
当服务端调用read函数收到客户端的数据后,就可以再调用write函数将该数据再响应给客户端。
服务端处理请求
需要注意的是,服务端读取数据是服务套接字中读取的,而写入数据的时候也是写入进服务套接字的。也就是说这里为客户端提供服务的套接字,既可以读取数据也可以写入数据,这就是TCP全双工的通信的体现。

在从服务套接字中读取客户端发来的数据时,如果调用read函数后得到的返回值为0,或者读取出错了,此时就应该直接将服务套接字对应的文件描述符关闭。因为文件描述符本质就是数组的下标,因此文件描述符的资源是有限的,如果我们一直占用,那么可用的文件描述符就会越来越少,因此服务完客户端后要及时关闭对应的文件描述符,否则会导致文件描述符泄漏。

class TcpServer
{
public:void Service(int sock, std::string client_ip, int client_port){char buffer[1024];while (true){ssize_t size = read(sock, buffer, sizeof(buffer)-1);if (size > 0){ //读取成功buffer[size] = '\0';std::cout << "get a new link->" << sock << " [" << client_ip << "]:" << client_port << std::endl;write(sock, buffer, size);}else if (size == 0){ //对端关闭连接std::cout << client_ip << ":" << client_port << " close!" << std::endl;break;}else{ //读取失败std::cerr << sock << " read error!" << std::endl;break;}}close(sock); //归还文件描述符std::cout << client_ip << ":" << client_port << " service done!" << std::endl;}void Start(){for (;;){//获取连接struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));socklen_t len = sizeof(peer);int sock = accept(_listen_sock, (struct sockaddr*)&peer, &len);if (sock < 0){std::cerr << "accept error, continue next" << std::endl;continue;}std::string client_ip = inet_ntoa(peer.sin_addr);int client_port = ntohs(peer.sin_port);std::cout << "get a new link [" << client_ip << "]:" << client_port << std::endl;//处理请求Service(sock, client_ip, client_port);}}
private:int _listen_sock; //监听套接字int _port; //端口号
};

客户端创建套接字

同样的,我们将客户端也封装成一个类,当我们定义出一个客户端对象后也需要对其进行初始化,而初始化客户端唯一需要做的就是创建套接字。而客户端在调用socket函数创建套接字时,参数设置与服务端创建套接字时是一样的。
客户端不需要进行绑定和监听:

服务端要进行绑定是因为服务端的IP地址和端口号必须要众所周知,不能随意改变。而客户端虽然也需要IP地址和端口号,但是客户端并不需要我们进行绑定操作,客户端连接服务端时系统会自动指定一个端口号给客户端。
服务端需要进行监听是因为服务端需要通过监听来获取新连接,但是不会有人主动连接客户端,因此客户端是不需要进行监听操作的。
此外,客户端必须要知道它要连接的服务端的IP地址和端口号,因此客户端除了要有自己的套接字之外,还需要知道服务端的IP地址和端口号,这样客户端才能够通过套接字向指定服务器进行通信。

class TcpClient
{
public:TcpClient(std::string server_ip, int server_port): _sock(-1), _server_ip(server_ip), _server_port(server_port){}void InitClient(){//创建套接字_sock = socket(AF_INET, SOCK_STREAM, 0);if (_sock < 0){std::cerr << "socket error" << std::endl;exit(2);}}~TcpClient(){if (_sock >= 0){close(_sock);}}
private:int _sock; //套接字std::string _server_ip; //服务端IP地址int _server_port; //服务端端口号
};

客户端连接服务器

由于客户端不需要绑定,也不需要监听,因此当客户端创建完套接字后就可以向服务端发起连接请求。
connect函数
发起连接请求的函数叫做connect,该函数的函数原型如下:

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

参数说明:

sockfd:特定的套接字,表示通过该套接字发起连接请求。
addr:对端网络相关的属性信息,包括协议家族、IP地址、端口号等。
addrlen:传入的addr结构体的长度。
返回值说明:

连接或绑定成功返回0,连接失败返回-1,同时错误码会被设置。

客户端连接服务器

需要注意的是,客户端不是不需要进行绑定,而是不需要我们自己进行绑定操作,当客户端向服务端发起连接请求时,系统会给客户端随机指定一个端口号进行绑定。因为通信双方都必须要有IP地址和端口号,否则无法唯一标识通信双方。也就是说,如果connect函数调用成功了,客户端本地会随机给该客户端绑定一个端口号发送给对端服务器。

此外,调用connect函数向服务端发起连接请求时,需要传入服务端对应的网络信息,否则connect函数也不知道该客户端到底是要向哪一个服务端发起连接请求。

class TcpClient
{
public:void Start(){struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));peer.sin_family = AF_INET;peer.sin_port = htons(_server_port);peer.sin_addr.s_addr = inet_addr(_server_ip.c_str());if (connect(_sock, (struct sockaddr*)&peer, sizeof(peer)) == 0){ //connect successstd::cout << "connect success..." << std::endl;Request(); //发起请求}else{ //connect errorstd::cerr << "connect failed..." << std::endl;exit(3);}}
private:int _sock; //套接字std::string _server_ip; //服务端IP地址int _server_port; //服务端端口号
};

客户端发起请求
由于我们实现的是一个简单的回声服务器,因此当客户端连接到服务端后,客户端就可以向服务端发送数据了,这里我们可以让客户端将用户输入的数据发送给服务端,发送时调用write函数向套接字当中写入数据即可。

当客户端将数据发送给服务端后,由于服务端读取到数据后还会进行回显,因此客户端在发送数据后还需要调用read函数读取服务端的响应数据,然后将该响应数据进行打印,以确定双方通信无误。

class TcpClient
{
public:void Request(){std::string msg;char buffer[1024];while (true){std::cout << "Please Enter# ";getline(std::cin, msg);write(_sock, msg.c_str(), msg.size());ssize_t size = read(_sock, buffer, sizeof(buffer)-1);if (size > 0){buffer[size] = '\0';std::cout << "server echo# " << buffer << std::endl;}else if (size == 0){std::cout << "server close!" << std::endl;break;}else{std::cerr << "read error!" << std::endl;break;}}}void Start(){struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));peer.sin_family = AF_INET;peer.sin_port = htons(_server_port);peer.sin_addr.s_addr = inet_addr(_server_ip.c_str());if (connect(_sock, (struct sockaddr*)&peer, sizeof(peer)) == 0){ //connect successstd::cout << "connect success..." << std::endl;Request(); //发起请求}else{ //connect errorstd::cerr << "connect failed..." << std::endl;exit(3);}}
private:int _sock; //套接字std::string _server_ip; //服务端IP地址int _server_port; //服务端端口号
};

在运行客户端程序时我们就需要携带上服务端对应的IP地址和端口号,然后我们就可以通过服务端的IP地址和端口号构造出一个客户端对象,对客户端进行初始后启动客户端即可。

void Usage(std::string proc)
{std::cout << "Usage: " << proc << "server_ip server_port" << std::endl;
}
int main(int argc, char* argv[])
{if (argc != 3){Usage(argv[0]);exit(1);}std::string server_ip = argv[1];int server_port = atoi(argv[2]);TcpClient* clt = new TcpClient(server_ip, server_port);clt->InitClient();clt->Start();return 0;
}

在运行客户端程序时我们就需要携带上服务端对应的IP地址和端口号,然后我们就可以通过服务端的IP地址和端口号构造出一个客户端对象,对客户端进行初始后启动客户端即可。

void Usage(std::string proc)
{std::cout << "Usage: " << proc << "server_ip server_port" << std::endl;
}
int main(int argc, char* argv[])
{if (argc != 3){Usage(argv[0]);exit(1);}std::string server_ip = argv[1];int server_port = atoi(argv[2]);TcpClient* clt = new TcpClient(server_ip, server_port);clt->InitClient();clt->Start();return 0;
}

单执行流的服务器

通过实验现象可以看到,这服务端只有服务完一个客户端后才会服务另一个客户端。因为我们目前所写的是一个单执行流版的服务器,这个服务器一次只能为一个客户端提供服务。

当服务端调用accept函数获取到连接后就给该客户端提供服务,但在服务端提供服务期间可能会有其他客户端发起连接请求,但由于当前服务器是单执行流的,只能服务完当前客户端后才能继续服务下一个客户端。

客户端为什么会显示连接成功?

当服务端在给第一个客户端提供服务期间,第二个客户端向服务端发起的连接请求时是成功的,只不过服务端没有调用accept函数将该连接获取上来罢了。

实际在底层会为我们维护一个连接队列,服务端没有accept的新连接就会放到这个连接队列当中,而这个连接队列的最大长度就是通过listen函数的第二个参数来指定的,因此服务端虽然没有获取第二个客户端发来的连接请求,但是在第二个客户端那里显示是连接成功的。
单执行流的服务器一次只能给一个客户端提供服务,此时服务器的资源并没有得到充分利用,因此服务器一般是不会写成单执行流的。要解决这个问题就需要将服务器改为多执行流的,此时就要引入多进程或多线程。

多进程版的TCP网络程序

当服务端调用accept函数获取到新连接后不是由当前执行流为该连接提供服务,而是当前执行流调用fork函数创建子进程,然后让子进程为父进程获取到的连接提供服务。

由于父子进程是两个不同的执行流,当父进程调用fork创建出子进程后,父进程就可以继续从监听套接字当中获取新连接,而不用关心获取上来的连接是否服务完毕。
子进程继承父进程的文件描述符表
需要注意的是,文件描述符表是隶属于一个进程的,子进程创建后会继承父进程的文件描述符表。比如父进程打开了一个文件,该文件对应的文件描述符是3,此时父进程创建的子进程的3号文件描述符也会指向这个打开的文件,而如果子进程再创建一个子进程,那么子进程创建的子进程的3号文件描述符也同样会指向这个打开的文件。
在这里插入图片描述
但当父进程创建子进程后,父子进程之间会保持独立性,此时父进程文件描述符表的变化不会影响子进程。最典型的代表就是匿名管道,父子进程在使用匿名管道进行通信时,父进程先调用pipe函数得到两个文件描述符,一个是管道读端的文件描述符,一个是管道写端的文件描述符,此时父进程创建出来的子进程就会继承这两个文件描述符,之后父子进程一个关闭管道的读端,另一个关闭管道的写端,这时父子进程文件描述符表的变化是不会相互影响的,此后父子进程就可以通过这个管道进行单向通信了。
等待子进程问题
当父进程创建出子进程后,父进程是需要等待子进程退出的,否则子进程会变成僵尸进程,进而造成内存泄漏。因此服务端创建子进程后需要调用wait或waitpid函数对子进程进行等待。

阻塞式等待与非阻塞式等待:

如果服务端采用阻塞的方式等待子进程,那么服务端还是需要等待服务完当前客户端,才能继续获取下一个连接请求,此时服务端仍然是以一种串行的方式为客户端提供服务。
如果服务端采用非阻塞的方式等待子进程,虽然在子进程为客户端提供服务期间服务端可以继续获取新连接,但此时服务端就需要将所有子进程的PID保存下来,并且需要不断花费时间检测子进程是否退出。
总之,服务端要等待子进程退出,无论采用阻塞式等待还是非阻塞式等待,都不尽人意。此时我们可以考虑让服务端不等待子进程退出。
不等待子进程退出的方式
让父进程不等待子进程退出,常见的方式有两种:

捕捉SIGCHLD信号,将其处理动作设置为忽略。
让父进程创建子进程,子进程再创建孙子进程,最后让孙子进程为客户端提供服务。
捕捉SIGCHLD信号
实际当子进程退出时会给父进程发送SIGCHLD信号,如果父进程将SIGCHLD信号进行捕捉,并将该信号的处理动作设置为忽略,此时父进程就只需专心处理自己的工作,不必关心子进程了。

class TcpServer
{
public:void Start(){signal(SIGCHLD, SIG_IGN); //忽略SIGCHLD信号for (;;){//获取连接struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));socklen_t len = sizeof(peer);int sock = accept(_listen_sock, (struct sockaddr*)&peer, &len);if (sock < 0){std::cerr << "accept error, continue next" << std::endl;continue;}std::string client_ip = inet_ntoa(peer.sin_addr);int client_port = ntohs(peer.sin_port);std::cout << "get a new link->" << sock << " [" << client_ip << "]:" << client_port << std::endl;pid_t id = fork();if (id == 0){ //child//处理请求Service(sock, client_ip, client_port);exit(0); //子进程提供完服务退出}}}
private:int _listen_sock; //监听套接字int _port; //端口号
};

让孙子进程提供服务

我们也可以让服务端创建出来的子进程再次进行fork,让孙子进程为客户端提供服务, 此时我们就不用等待孙子进程退出了。
命名说明:

爷爷进程:在服务端调用accept函数获取客户端连接请求的进程。
爸爸进程:由爷爷进程调用fork函数创建出来的进程。
孙子进程:由爸爸进程调用fork函数创建出来的进程,该进程调用Service函数为客户端提供服务。
我们让爸爸进程创建完孙子进程后立刻退出,此时服务进程(爷爷进程)调用wait/waitpid函数等待爸爸进程就能立刻等待成功,此后服务进程就能继续调用accept函数获取其他客户端的连接请求。

不需要等待孙子进程退出
而由于爸爸进程创建完孙子进程后就立刻退出了,因此实际为客户端提供服务的孙子进程就变成了孤儿进程,该进程就会被系统领养,当孙子进程为客户端提供完服务退出后系统会回收孙子进程,所以服务进程(爷爷进程)是不需要等待孙子进程退出的。
关闭对应的文件描述符
服务进程(爷爷进程)调用accept函数获取到新连接后,会让孙子进程为该连接提供服务,此时服务进程已经将文件描述符表继承给了爸爸进程,而爸爸进程又会调用fork函数创建出孙子进程,然后再将文件描述符表继承给孙子进程。

而父子进程创建后,它们各自的文件描述符表是独立的,不会相互影响。因此服务进程在调用fork函数后,服务进程就不需要再关心刚才从accept函数获取到的文件描述符了,此时服务进程就可以调用close函数将该文件描述符进行关闭。

同样的,对于爸爸进程和孙子进程来说,它们是不需要关心从服务进程(爷爷进程)继承下来的监听套接字的,因此爸爸进程可以将监听套接字关掉。

关闭文件描述符的必要性:

对于服务进程来说,当它调用fork函数后就必须将从accept函数获取的文件描述符关掉。因为服务进程会不断调用accept函数获取新的文件描述符(服务套接字),如果服务进程不及时关掉不用的文件描述符,最终服务进程中可用的文件描述符就会越来越少。
而对于爸爸进程和孙子进程来说,还是建议关闭从服务进程继承下来的监听套接字。实际就算它们不关闭监听套接字,最终也只会导致这一个文件描述符泄漏,但一般还是建议关上。因为孙子进程在提供服务时可能会对监听套接字进行某种误操作,此时就会对监听套接字当中的数据造成影响。

class TcpServer
{
public:void Start(){for (;;){//获取连接struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));socklen_t len = sizeof(peer);int sock = accept(_listen_sock, (struct sockaddr*)&peer, &len);if (sock < 0){std::cerr << "accept error, continue next" << std::endl;continue;}std::string client_ip = inet_ntoa(peer.sin_addr);int client_port = ntohs(peer.sin_port);std::cout << "get a new link->" << sock << " [" << client_ip << "]:" << client_port << std::endl;pid_t id = fork();if (id == 0){ //childclose(_listen_sock); //child关闭监听套接字if (fork() > 0){exit(0); //爸爸进程直接退出}//处理请求Service(sock, client_ip, client_port); //孙子进程提供服务exit(0); //孙子进程提供完服务退出}close(sock); //father关闭为连接提供服务的套接字waitpid(id, nullptr, 0); //等待爸爸进程(会立刻等待成功)}}
private:int _listen_sock; //监听套接字int _port; //端口号
};

多线程版的TCP网络程序

创建进程的成本是很高的,创建进程时需要创建该进程对应的进程控制块(task_struct)、进程地址空间(mm_struct)、页表等数据结构。而创建线程的成本比创建进程的成本会小得多,因为线程本质是在进程地址空间内运行,创建出来的线程会共享该进程的大部分资源,因此在实现多执行流的服务器时最好采用多线程进行实现。
当服务进程调用accept函数获取到一个新连接后,就可以直接创建一个线程,让该线程为对应客户端提供服务。

当然,主线程(服务进程)创建出新线程后,也是需要等待新线程退出的,否则也会造成类似于僵尸进程这样的问题。但对于线程来说,如果不想让主线程等待新线程退出,可以让创建出来的新线程调用pthread_detach函数进行线程分离,当这个线程退出时系统会自动回收该线程所对应的资源。此时主线程(服务进程)就可以继续调用accept函数获取新连接,而让新线程去服务对应的客户端。
各个线程共享同一张文件描述符表
文件描述符表维护的是进程与文件之间的对应关系,因此一个进程对应一张文件描述符表。而主线程创建出来的新线程依旧属于这个进程,因此创建线程时并不会为该线程创建独立的文件描述符表,所有的线程看到的都是同一张文件描述符表。
在这里插入图片描述
因此当服务进程(主线程)调用accept函数获取到一个文件描述符后,其他创建的新线程是能够直接访问这个文件描述符的。

需要注意的是,虽然新线程能够直接访问主线程accept上来的文件描述符,但此时新线程并不知道它所服务的客户端对应的是哪一个文件描述符,因此主线程创建新线程后需要告诉新线程对应应该访问的文件描述符的值,也就是告诉每个新线程在服务客户端时,应该对哪一个套接字进行操作。
参数结构体
实际新线程在为客户端提供服务时就是调用Service函数,而调用Service函数时是需要传入三个参数的,分别是客户端对应的套接字、IP地址和端口号。因此主线程创建新线程时需要给新线程传入三个参数,而实际在调用pthread_create函数创建新线程时,只能传入一个类型为void*的参数。

这时我们可以设计一个参数结构体Param,此时这三个参数就可以放到Param结构体当中,当主线程创建新线程时就可以定义一个Param对象,将客户端对应的套接字、IP地址和端口号设计进这个Param对象当中,然后将Param对象的地址作为新线程执行例程的参数进行传入。

此时新线程在执行例程当中再将这个void类型的参数强转为Param类型,然后就能够拿到客户端对应的套接字,IP地址和端口号,进而调用Service函数为对应客户端提供服务。
文件描述符关闭的问题
由于此时所有线程看到的都是同一张文件描述符表,因此当某个线程要对这张文件描述符表做某种操作时,不仅要考虑当前线程,还要考虑其他线程。

对于主线程accept上来的文件描述符,主线程不能对其进行关闭操作,该文件描述符的关闭操作应该又新线程来执行。因为是新线程为客户端提供服务的,只有当新线程为客户端提供的服务结束后才能将该文件描述符关闭。
对于监听套接字,虽然创建出来的新线程不必关心监听套接字,但新线程不能将监听套接字对应的文件描述符关闭,否则主线程就无法从监听套接字当中获取新连接了。
Service函数定义为静态成员函数
由于调用pthread_create函数创建线程时,新线程的执行例程是一个参数为void*,返回值为void*的函数。如果我们要将这个执行例程定义到类内,就需要将其定义为静态成员函数,否则这个执行例程的第一个参数是隐藏的this指针。

在线程的执行例程当中会调用Service函数,由于执行例程是静态成员函数,静态成员函数无法调用非静态成员函数,因此我们需要将Service函数定义为静态成员函数。恰好Service函数内部进行的操作都是与类无关的,因此我们直接在Service函数前面加上一个static即可。

class TcpServer
{
public:static void* HandlerRequest(void* arg){pthread_detach(pthread_self()); //分离线程//int sock = *(int*)arg;Param* p = (Param*)arg;Service(p->_sock, p->_ip, p->_port); //线程为客户端提供服务delete p; //释放参数占用的堆空间return nullptr;}void Start(){for (;;){//获取连接struct sockaddr_in peer;memset(&peer, '\0', sizeof(peer));socklen_t len = sizeof(peer);int sock = accept(_listen_sock, (struct sockaddr*)&peer, &len);if (sock < 0){std::cerr << "accept error, continue next" << std::endl;continue;}std::string client_ip = inet_ntoa(peer.sin_addr);int client_port = ntohs(peer.sin_port);std::cout << "get a new link->" << sock << " [" << client_ip << "]:" << client_port << std::endl;Param* p = new Param(sock, client_ip, client_port);pthread_t tid;pthread_create(&tid, nullptr, HandlerRequest, p);}}
private:int _listen_sock; //监听套接字int _port; //端口号
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249718.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式——模板方法模式(Template Method Pattern)

概述 模板方法模式&#xff1a;定义一个操作中算法的框架&#xff0c;而将一些步骤延迟到子类中。模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。模板方法模式是一种基于继承的代码复用技术&#xff0c;它是一种类行为型模式。模板方法模式是结…

基于node.js和Vue3的医院挂号就诊住院信息管理系统

摘要&#xff1a; 随着信息技术的快速发展&#xff0c;医院挂号就诊住院信息管理系统的构建变得尤为重要。该系统旨在提供一个高效、便捷的医疗服务平台&#xff0c;以改善患者就医体验和提高医院工作效率。本系统基于Node.js后端技术和Vue3前端框架进行开发&#xff0c;利用其…

【Emgu CV教程】6.8、图像平滑之BilateralFilter()双边滤波

文章目录 一、介绍1.原理2.函数介绍 二、举例1.原始素材2.代码3.运行结果 一、介绍 1.原理 BilateralFilter()双边滤波也是非线性滤波&#xff0c;之前介绍的滤波只考虑空间信息&#xff08;滤波核或邻域&#xff09;&#xff0c;容易造成边缘模糊和细节丢失&#xff0c;相比…

在Windows系统中执行DOS命令

目录 一、用菜单的形式进入DOS窗口 二、通过IE浏览器访问DOS窗口 三、复制、粘贴命令行 四、设置窗口风格 1.颜色 2.字体 3.布局 4.选项 五、Windows系统命令行 由于Windows系统彻底脱离了DOS操作系统&#xff0c;所以无法直接进入DOS环境&#xff0c;只能通过第三方软…

UE4学习笔记 FPS游戏制作3 添加武器

文章目录 章节目标为骨骼添加武器挂载点添加武器 章节目标 本章节为手部添加一个武器挂载点&#xff0c;并挂载一个武器 为骨骼添加武器挂载点 添加挂载点需要以一个动画片段为基础&#xff0c;为骨骼添加挂载点。 首先找到我们需要的动画片段&#xff0c;通常是idle 双击打…

c++设计模式之观察者模式(发布-订阅模式)

介绍 观察者模式主要关注于对象的一对多关系&#xff0c;其中多个对象都依赖于一个对象&#xff0c;当该对象的状态发生改变时&#xff0c;其余对象都能接收到相应的通知。 如&#xff0c;现在有 一个数据对象三个画图对象&#xff0c;分别wield曲线图、柱状图、饼状图三个对象…

草图导入3d后模型贴材质的步骤?---模大狮模型网

3D模型在导入草图大师后出现混乱可能有多种原因&#xff0c;以下是一些可能的原因和解决方法&#xff1a; 模型尺寸问题&#xff1a;如果3D模型的尺寸在导入草图大师时与画布尺寸不匹配&#xff0c;可能导致模型混乱。解决方法是在3D建模软件中调整模型的尺寸&#xff0c;使其适…

深入解剖指针篇(2)

目录 指针的使用 strlen的模拟实现 传值调用和传址调用 数组名的理解 使用指针访问数组 一维数组传参的本质 冒泡排序 个人主页&#xff08;找往期文章&#xff09;&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 指针的使用 strlen的模拟实现 库函数strlen的功能是求字符串…

南京观海微电子---如何减少时序报告中的逻辑延迟

1. 引言 在FPGA逻辑电路设计中&#xff0c;FPGA设计能达到的最高性能往往由以下因素决定&#xff1a; ▪ 工作时钟偏移和时钟不确定性&#xff1b; ▪ 逻辑延迟&#xff1a;在一个时钟周期内信号经过的逻辑量&#xff1b; ▪ 网络或路径延迟&#xff1a;Vivado布局布线后引…

多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测

多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测 目录 多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络…

C++模板:非类型模板参数、特化以及分离编译

一、非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成…

Linux--Shell基础

学习笔记&#xff0c;记录以下课程中关于Linux的Shell基础知识。 黑马程序员linux入门到精通&#xff08;下部分&#xff09;_哔哩哔哩_bilibili 目录 1.编写规范 2.变量 2.1 变量的含义 2.2 变量的定义和使用 2.3 只读变量&#xff08;了解&#xff09; 2.4 接收用户输入…

Github 2024-02-02开源项目日报Top10

根据Github Trendings的统计&#xff0c;今日(2024-02-02统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目6HTML项目2TypeScript项目2C#项目1JavaScript项目1 ChatGPT提示库 创建周期&#xff1a;424 天开…

用Python处理TDC激光测距数据并绘制为图片

用Python处理TDC激光测距数据并绘制为图片 说明一、定义全局变量变二、主函数入口三、处理原始文件数据四、将数据叠加统计生成图片五、额外的辅助函数六、将数据进行各种形式统计叠加七、原始数据形式八、 测试结果 说明 1. 主要是将TDC激光测距数据进行统计叠加并绘制为图片…

【数据结构(C语言)】树、二叉树详解

目录 文章目录 前言 一、树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用 二、二叉树的概念及结构 2.1 二叉树的概念 2.2 二叉树的基本形态 ​编辑2.3 特殊的二叉树 2.4 二叉树的性质 2.5 二叉树的存储结构 三、二叉树的顺序结…

C语言实现12种排序算法

1.冒泡排序 思路&#xff1a;比较相邻的两个数字&#xff0c;如果前一个数字大&#xff0c;那么就交换两个数字&#xff0c;直到有序。 时间复杂度&#xff1a;O(n^2)&#xff0c;稳定性&#xff1a;这是一种稳定的算法。 代码实现&#xff1a; void bubble_sort(int arr[],…

服务攻防-端口协议桌面应用QQWPS等RCEhydra口令猜解未授权检测

知识点&#xff1a; 1、端口协议-弱口令&未授权&攻击方式等 2、桌面应用-社交类&文档类&工具类等 章节点&#xff1a; 1、目标判断-端口扫描&组合判断&信息来源 2、安全问题-配置不当&CVE漏洞&弱口令爆破 3、复现对象-数据库&中间件&…

【Jenkins】配置及使用|参数化|邮件|源码|报表|乱码

目录 一、Jenkins 二、Jenkins环境搭建 1、下载所需的软件包 2、部署步骤 3、其他 三、Jenkins全局设置 &#xff08;一&#xff09;Manage Jenkins——Tools系统管理->全局工具配置分别配置JDK、Maven、Allure、Git&#xff0c;可以配置路径或者直接选择版本安装 1…

判断当前设备是不是安卓或者IOS?

代码(重要点): 当前文件要是 xxx.js文件,就需要写好代码后调用才会执行: // 判断是不是安卓 const isAndroid () > {return /android/.test(navigator.userAgent.toLowerCase()); }// 判断是不是ios const isIOS () > {return /iphone|ipad|ipod/.test(navigator.use…

JUC并发编程01——进程,线程(详解),并发和并行

目录 1.进程和线程的概念及对比1.进程概述 2.线程3.对比 2.并行与并发1.并发2.并行 3.线程详解3.1.创建和运行线程3.1.1.Thread3.1.2.Runnable结合Thread 创建线程3.1.3.Callable 3.2线程方法APIrun startsleep yieldjoininterrupt打断线程打断 park终止模式 daemon不推荐使用的…