深入解剖指针篇(2)

目录

指针的使用

strlen的模拟实现

传值调用和传址调用

数组名的理解

使用指针访问数组 

一维数组传参的本质

冒泡排序


个人主页(找往期文章):我要学编程(ಥ_ಥ)-CSDN博客

 

指针的使用

strlen的模拟实现

库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。

函数原型:

知道了上面这些,我们就直接开是写代码 。

#include <stdio.h>
int my_strlen(const char* p)
{int count = 0;while (*p != '\0'){count++;p++;}return count;
}
int main()
{char arr[] = "abcdef";int len = my_strlen(arr);printf("%d\n", len);return 0;
}

如果要真正相同的话,这个函数的返回类型也应该改一改。

#include <stdio.h>
size_t my_strlen(const char* p)
{size_t count = 0;while (*p != '\0'){count++;p++;}return count;
}
int main()
{char arr[] = "abcdef";size_t len = my_strlen(arr);printf("%zd\n", len);return 0;
}

因为函数返回类型改了,那么那个返回的值(count)的类型也应该变,接收的,打印的都要变。 

传值调用和传址调用

 学习指针的目的是使用指针解决问题,那什么问题,非指针不可呢?

例如:写一个函数,交换两个整型变量的值

#include <stdio.h>
void swap(int a, int b)
{int tmp = 0;tmp = a;a = b;b = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d%d", &a, &b);printf("交换前:a=%d,b=%d\n", a, b);swap(a, b);printf("交换后:a=%d,b=%d\n", a, b);return 0;
}

我们去运行这个代码会发现,交换前后a与b的值根本就没有发生变化。

这到底是什么原因导致的呢?我们可以尝试调试一下(因为这里我形参和实参都是设置a和b,不好观察,我就把形参改成x和y了): 

通过上面两幅图,我们可以看到x与y的值,虽然交换了,但是却没有影响到a与b。我们在通过指针来深入观察:

我们可以看到a,b与x,y的地址不是一样的,相当于x和y是独立的空间,那么在swap函数内部交换x和y的值, 自然不会影响a和b,当swap函数调用结束后回到main函数,a和b的没法交换。swap函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用。

结论:实参传递给形参的时候,形参会单独创建一份临时空间来接收实参,对形参的修改不影响实 参。 所以swap函数是无效的。

通过前面指针的学习,我们知道可以通过指针来寻找到它所指向的对象,并且可以修改这个对象的值。在main函数中将a和b的地址传递给swap函数,swap 函数里边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。

#include <stdio.h>
void swap(int* x, int* y)
{int tmp = 0;tmp = *x;*x = *y;*y = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d%d", &a, &b);printf("交换前:a=%d,b=%d\n", a, b);swap(&a, &b);printf("交换后:a=%d,b=%d\n", a, b);return 0;
}

上面代码是将a与b的地址传给了函数swap,这种叫做传址调用。

传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用。 

数组名的理解

在使用指针访问数组的内容时,有这样的代码:

上面两种写法都是对的,用代码验证一下。

&arr[0]的写法:

#include <stdiio.h>
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[] = { 1,2,3,4,5 };int sz = sizeof(arr) / sizeof(arr[0]);Print(&arr[0], sz);return 0;
}

arr的写法:

#inlcude <stdio.h>
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[] = { 1,2,3,4,5 };int sz = sizeof(arr) / sizeof(arr[0]);Print(arr, sz);return 0;
}

我们可以看到这两个代码的结果是一模一样的。就说明&arr[0]与arr是一样的。换句话说,数组名就是数组首元素的地址。但是有两种情况是例外:

• sizeof(数组名),sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小, 单位是字节

• &数组名,这里的数组名表示整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素的地址是有区别的) 除此之外,任何地方使用数组名,数组名都表示首元素的地址。

我们可以通过打印的结果知道: sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小。

这些是十六进制,通过计算可以得知:&arr[0]和&arr[0]+1相差4个字节,是因为&arr[0] 都是首元素的地址,+1就是跳过一个元素。但是&arr 和 &arr+1相差40个字节,这就是因为&arr是数组的地址,+1 操作是跳过整个数组的。

但是在用代码证明时,有的小伙伴,可能会写成下面的代码,从而无法证明。

之所以会这样,是因为这个&arr,是指整个数组,而这个p1是一个指针变量,只能存放一个地址,不能将整个地址给存放。如果强行这样做,就导致整个p1,只是存了第一个元素的地址。达不到我们的预期。

使用指针访问数组 

有了前面知识的支持,再结合数组的特点,我们就可以很方便的使用指针访问数组了。

练习:用指针实现数组的输入和输出。

#include <stdio.h>
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);int* p = arr;int i = 0;for (i = 0; i < sz; i++){scanf("%d", p + i);}for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}

我们再分析一下,数组名arr是数组首元素的地址,可以赋值给p,其实数组名arr和p在这里是等价的。那我们可以使用arr[i]可以访问数组的元素,那p[i]是否也可以访问数组呢? 

所以本质上p[i] 是等价于 *(p+i)。我们可以理解为[ ] == * 。

一维数组传参的本质

数组是可以传递给函数的,我们讨论一下数组传参的本质。 首先从一个问题开始,我们之前都是在函数外部计算数组的元素个数,那我们可以把数组传给一个函数后,函数内部求数组的元素个数吗?

我们发现在函数内部是没有正确获得数组的元素个数。 这就要学习数组传参的本质了,上面验证了:数组名是数组首元素的地址;那么在数组传参的时候,传递的是数组名,也就是说本质上数组传参本质上传递的是数组首元素的地址。 所以函数形参的部分理论上应该使用指针变量来接收首元素的地址。那么在函数内部我们写 sizeof(arr) 计算的是一个指针的大小(单位字节)而不是数组的大小(单位字节)。正是因为函数的参数部分是本质是指针,所以在函数内部是没办法求的数组元素个数的。 而这个sz2的值是和32位平台还是64位有关。因为指针变量的大小在32位平台下是4个字节,64位是8个字节。

总结:一维数组传参,形参的部分可以写成数组的形式,也可以写成指针的形式。

冒泡排序

冒泡排序的核心思想就是:两两相邻的元素进行比较。

冒泡排序是一种算法,用来解决数组内部元素有序的问题。比如:有一个数组,内部元素杂乱无章,但是我们要的是一个降序的数组。这时就可以采用冒泡排序的方法。具体怎么实现呢?我就用画图的方式给大家展现出来。

到这里这个代码也就可以写出来了。

#include <stdio.h>
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int j = 0;for (j = 0; j < sz - 1; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;}}}
}
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);Init(arr, sz);bubble_sort(arr, sz);//改成降序Print(arr, sz);return 0;
}

但是如果我们再仔细分析的话,就会发现在每一趟的元素比较中,需要比较的元素个数是随着趟数的增加,变得越来越少。举例:第一趟要比较10个数,得出一个数是最小的之后,第二趟来比较时,就不需要和那个第一趟比较出的数再来比较了。因为第一趟比较出的数之所以最小,是因为它在这是个元素中是最小的,那么第二趟比较出的那个最小数,一定比那个第一趟比较出的那个数要大才行。以此类推,第二趟比较9个数就是j到7就可以了(j+1等于8,第九个数的下标是8),第三趟比较8个数就是j到6就可以了。那么最终的规律就是j<sz-1-i。

改进的代码:

#include <stdio.h>
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int j = 0;for (j = 0; j < sz - 1 - i; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;}}}
}
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);Init(arr, sz);bubble_sort(arr, sz);//改成降序Print(arr, sz);return 0;
}

其实到这里了,这个代码还能够优化一点:如果我们的数组里,就只有一个元素不是有序的,其余的都是有顺序的,因此我们只需要比较一次就可以了。

如果这个数组是9 8 7 6 5 4 3 2 1 10,这个想要变成降序,就需要走9趟了。因为第一趟就只能把1和10换位置。还剩下其它的数要换,就只能走9趟 

那么怎么判断这个数组比较过后是有序还是无序呢?

法一:可以定义一个flag变量,初始化为1。如果这个有序了,啥也不干,那么就令它为0;否则就是1。每走完一趟之后就可以根据flag的值,判断是否有序。如果是0,就说明这个数组有序,跳出循环。

#include <stdio.h>
//void init(int* p, int sz)
//{
//	int i = 0;
//	for (i = 0; i < sz; i++)
//	{
//		scanf("%d", (p + i));
//	}
//}
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int flag = 1;//注意这个定义的位置。int j = 0;for (j = 0; j < sz - 1 - i; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;flag = 0;//一旦进入就变为0。}	}if (flag == 1)//等于1,代表if一次也没有执行。{break;}}
}
void print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 9,10,8,7,6,5,4,3,2,1 };int sz = sizeof(arr) / sizeof(arr[0]);//init(arr, sz);bubble_sort(arr, sz);//改成降序print(arr, sz);return 0;
}

法二:可以定义一个变量count,如果这个一趟里面每没有执行一次,count就++。一趟走完之后,如果count==sz-1-i,那么说明这个数组已经有序,就跳出循环。

#include <stdio.h>
//void Init(int* p, int sz)
//{
//	int i = 0;
//	for (i = 0; i < sz; i++)
//	{
//		scanf("%d", (p + i));
//	}
//}
void bubble_sort(int* p, int sz)
{int i = 0;for (i = 0; i < sz - 1; i++)//趟数{int j = 0;int count = 0;//注意这个定义的位置,如果定义在趟数的外面,这个count就会累加for (j = 0; j < sz - 1 - i; j++)//每一趟{if (*(p + j) < *(p + j + 1)){int tmp = *(p + j);*(p + j) = *(p + j + 1);*(p + j + 1) = tmp;}else{count++;}}if (count == sz - 1 - i)如果count等于这个,就说明if一次也没有执行{break;}}
}
void Print(int* p, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}
}
int main()
{int arr[10] = { 9,10,8,7,6,5,4,3,2,1 };int sz = sizeof(arr) / sizeof(arr[0]);//Init(arr, sz);bubble_sort(arr, sz);//改成降序Print(arr, sz);return 0;
}

上面有些代码被注释,是为了更好的调试观察。当然大家可以把那些注释去掉。 

上面两种优化可以通过调试来观察是否优化成功(VS的调试方法在我往期的文章里,可以去主页里找) 。

 感觉四篇文章可能写不完指针的所有内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249708.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

南京观海微电子---如何减少时序报告中的逻辑延迟

1. 引言 在FPGA逻辑电路设计中&#xff0c;FPGA设计能达到的最高性能往往由以下因素决定&#xff1a; ▪ 工作时钟偏移和时钟不确定性&#xff1b; ▪ 逻辑延迟&#xff1a;在一个时钟周期内信号经过的逻辑量&#xff1b; ▪ 网络或路径延迟&#xff1a;Vivado布局布线后引…

多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测

多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测 目录 多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络…

C++模板:非类型模板参数、特化以及分离编译

一、非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成…

Linux--Shell基础

学习笔记&#xff0c;记录以下课程中关于Linux的Shell基础知识。 黑马程序员linux入门到精通&#xff08;下部分&#xff09;_哔哩哔哩_bilibili 目录 1.编写规范 2.变量 2.1 变量的含义 2.2 变量的定义和使用 2.3 只读变量&#xff08;了解&#xff09; 2.4 接收用户输入…

Github 2024-02-02开源项目日报Top10

根据Github Trendings的统计&#xff0c;今日(2024-02-02统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目6HTML项目2TypeScript项目2C#项目1JavaScript项目1 ChatGPT提示库 创建周期&#xff1a;424 天开…

用Python处理TDC激光测距数据并绘制为图片

用Python处理TDC激光测距数据并绘制为图片 说明一、定义全局变量变二、主函数入口三、处理原始文件数据四、将数据叠加统计生成图片五、额外的辅助函数六、将数据进行各种形式统计叠加七、原始数据形式八、 测试结果 说明 1. 主要是将TDC激光测距数据进行统计叠加并绘制为图片…

【数据结构(C语言)】树、二叉树详解

目录 文章目录 前言 一、树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用 二、二叉树的概念及结构 2.1 二叉树的概念 2.2 二叉树的基本形态 ​编辑2.3 特殊的二叉树 2.4 二叉树的性质 2.5 二叉树的存储结构 三、二叉树的顺序结…

C语言实现12种排序算法

1.冒泡排序 思路&#xff1a;比较相邻的两个数字&#xff0c;如果前一个数字大&#xff0c;那么就交换两个数字&#xff0c;直到有序。 时间复杂度&#xff1a;O(n^2)&#xff0c;稳定性&#xff1a;这是一种稳定的算法。 代码实现&#xff1a; void bubble_sort(int arr[],…

服务攻防-端口协议桌面应用QQWPS等RCEhydra口令猜解未授权检测

知识点&#xff1a; 1、端口协议-弱口令&未授权&攻击方式等 2、桌面应用-社交类&文档类&工具类等 章节点&#xff1a; 1、目标判断-端口扫描&组合判断&信息来源 2、安全问题-配置不当&CVE漏洞&弱口令爆破 3、复现对象-数据库&中间件&…

【Jenkins】配置及使用|参数化|邮件|源码|报表|乱码

目录 一、Jenkins 二、Jenkins环境搭建 1、下载所需的软件包 2、部署步骤 3、其他 三、Jenkins全局设置 &#xff08;一&#xff09;Manage Jenkins——Tools系统管理->全局工具配置分别配置JDK、Maven、Allure、Git&#xff0c;可以配置路径或者直接选择版本安装 1…

判断当前设备是不是安卓或者IOS?

代码(重要点): 当前文件要是 xxx.js文件,就需要写好代码后调用才会执行: // 判断是不是安卓 const isAndroid () > {return /android/.test(navigator.userAgent.toLowerCase()); }// 判断是不是ios const isIOS () > {return /iphone|ipad|ipod/.test(navigator.use…

JUC并发编程01——进程,线程(详解),并发和并行

目录 1.进程和线程的概念及对比1.进程概述 2.线程3.对比 2.并行与并发1.并发2.并行 3.线程详解3.1.创建和运行线程3.1.1.Thread3.1.2.Runnable结合Thread 创建线程3.1.3.Callable 3.2线程方法APIrun startsleep yieldjoininterrupt打断线程打断 park终止模式 daemon不推荐使用的…

Kotlin 协程:用源码来理解 ‘viewModelScope‘

Kotlin 协程&#xff1a;用源码来理解 ‘viewModelScope’ Kotlin 协程是 Kotlin 语言的一大特色&#xff0c;它让异步编程变得更简单。在 Android 开发中&#xff0c;我们经常需要在后台线程执行耗时操作&#xff0c;例如网络请求或数据库查询&#xff0c;然后在主线程更新 UI…

坚持刷题 | 完全二叉树的节点个数

Hello&#xff0c;大家好&#xff0c;我是阿月&#xff01;坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;今天刷&#xff1a;完全二叉树的节点个数 题目 222.完全二叉树的节点个数 代码实现 class TreeNode {int val;TreeNode left, right;public TreeNode(int val) …

Android进阶之路 - ViewPager2 比 ViewPager 强在哪?

我记得前年&#xff08;2022&#xff09;面试的时候有被问到 ViewPager 和 ViewPager2 有什么区别&#xff1f;当时因为之前工作一直在开发售货机相关的项目&#xff0c;使用的技术要求并不高&#xff0c;所以一直没去了解过 ViewPager2~ 去年的时候正好有相关的功能需求&#…

数学建模 - 线性规划入门:Gurobi + python

在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中&#xff0c;人们常常会遇到各种优化问题。例如&#xff0c;在生产经营中&#xff0c;我们总是希望制定最优的生产计划&#xff0c;充分利用已有的人力、物力资源&#xff0c;获得最大的经济效益&#…

pytorch_car_caring 排坑记录

pytorch_car_caring 排坑记录 任务踩坑回顾简单环境问题代码版本问题症状描述解决方法 cuda问题&#xff08;异步问题&#xff09;症状描述解决方法 任务 因为之前那个MPC代码跑出来的效果不理想&#xff0c;看了一天代码&#xff0c;大概看明白了&#xff0c;但要做改进还要有…

R-YOLO

Abstract 提出了一个框架&#xff0c;名为R-YOLO&#xff0c;不需要在恶劣天气下进行注释。考虑到正常天气图像和不利天气图像之间的分布差距&#xff0c;我们的框架由图像翻译网络&#xff08;QTNet&#xff09;和特征校准网络&#xff08;FCNet&#xff09;组成&#xff0c;…

【数睿】数睿常见问题处理

连接器请求地址修改 cat /home/sdata2/tomcat/bin/setenv.sh修改里面的 SYSTEM_URL 为数睿服务实际访问地址 如图所示 连接器执行 异常日志 2024-01-23 18:01:49,586 (conf-file-poller-0) [ERROR - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$Fil…

全链路压测的关键点是什么?

全链路压测是一种重要的性能测试方法&#xff0c;用于评估应用程序或系统在真实生产环境下的性能表现。通过模拟真实用户行为和流量&#xff0c;全链路压测能够全面评估系统在不同负载下的稳定性和性能表现。本文将介绍全链路压测的关键点&#xff0c;以帮助企业更好地理解和应…