C语言数据结构之二叉树

少年恃险若平地

独倚长剑凌清秋


🎥烟雨长虹,孤鹜齐飞的个人主页

🔥个人专栏

🎥前期回顾-栈和队列

期待小伙伴们的支持与关注!!!


目录

 树的定义与判定

树的定义

树的判定

树的相关概念 

树的运用 

树的表示 

 二叉树的概念及结构

二叉树的概念

二叉树的结构

特殊的二叉树

满二叉树

完全二叉树

二叉树的性质 

二叉树的存储结构  

顺序存储

链式存储

二叉树的遍历 

二叉树结构定义 

 二叉树前序遍历

代码测试

二叉树中序遍历 

代码测试

二叉树后序遍历  

代码测试

二叉树遍历口诀 

二叉树的层序遍历 

二叉树结点的个数 

代码测试

 二叉树叶子结点的个数

代码测试

  二叉树的高度

代码测试

二叉树第k层节点个数 

代码测试

二叉树查找值为x的节点 

总结: 

我们数据结构的前几章都是线性结构,而我们今天来学习非线性结构的数形结构--

那什么是树形结构呢?

如图所示:根在下,叶朝上 的就是我们生活中的树

 树的定义与判定

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合
把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是 根朝上,而叶朝下

树的定义


<1>有且仅有一个特殊的结点,称为根结点,根节点没有前驱结点

<2>除根节点外,其余结点被分成M(M>0)个互不相交的集合:T1T2… …Tm

其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树

每棵子树的根结点有且只有一个前驱,可以有零个或多个后继

<3>树是递归定义的

树的判定

<1>树形结构中,子树之间不能有交集,否则就不是树形结构
<2>除了根节点以外,每个节点有且只有一个父节点
<3>一颗N节点的数有N-1条边

像以下的结构就是树形结构

像以下 子树之间有交集 的结构就 不能 叫做树形结构

树的相关概念 

节点的度 一个节点含有的子树的个数称为该节点的度 ; 如上图: A 的节点度为 6
叶节点或终端节点 度为0的节点称为叶节点 ; 如上图: B C H I... 等节点为叶节点
非终端节点或分支节点 度不为0的节点 ; 如上图: D E F G... 等节点为分支节点
双亲节点或父节点 若一个节点含有子节点,则这个节点称为其子节点的父节点 ; 如上图: A B 的父节点
孩子节点或子节点 一个节点含有的子树的根节点称为该节点的子节点 ; 如上图: B A 的孩子节点
兄弟节点 具有相同父节点的节点互称为兄弟节点 ; 如上图: B C 是兄弟节点
树的度 一棵树中,最大的节点的度称为树的度 ; 如上图:树的度为 6
节点的层次 从根开始定义起,根为第1层,根的子节点为第2层,以此类推
树的高度或深度 树中节点的最大层次 ; 如上图:树的高度为 4
堂兄弟节点 双亲在同一层的节点互为堂兄弟 ;如上图: H I 互为兄弟节点
节点的祖先 从根到该节点所经分支上的所有节点 ;如上图: A 是所有节点的祖先
子孙 以某节点为根的子树中任一节点都称为该节点的子孙 ;如上图:所有节点都是 A 的子孙
森林 由m(m>0)棵互不相交的树的集合称为森林

结点的度

结点拥有的子树数目称为结点的 

结点层次 

根开始定义 起,根为第一层,根的孩子为第二层,以此类推

树的深度

树中结点的 最大层次 数称为树的深度或高度

树的运用 

以下是文件系统中目录的树的运用

树的表示 

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了, 既然保存值域,也要保存结点和结点之间 的关系 ,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的 孩子兄弟表示法
typedef char BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;    // 第一个孩子结点struct BinaryTreeNode* right;   // 指向其下一个兄弟结点BTDataType data;                // 结点中的数据域
}BTNode;

 二叉树的概念及结构

二叉树的概念

二叉树(Binary Tree):是一个n(n>=0)个节点所构成的集合

该集合分为空树(n = 0),或者非空树

对于非空树

<1>有且仅有一个 根节点
<2>由一个 根节点 加上两棵 左子树 右子树 (别称)的二叉树组成
二叉树与树一样具有 递归 性质,二叉树的特性主要有以下两点: 
<1>二叉树 不存在度大于2的结点
<2>二叉树的子树 有左右之分,次序不能颠倒 ,因此二叉树是 有序树

二叉树的结构

二叉树的五种基本形式:

特殊的二叉树

满二叉树

<1>满二叉树:一个二叉树,每层的结点数都达到最大值,则这个二叉树就是满二叉树

假设一颗满二叉树的高度为h

则总节点的个数:

N = 2^{h} -1

h = log_{2}N

每一个层的结点数都达到最大值
如果一个二叉树的层数为 K ,且结点总数是 2^k-1

完全二叉树

<2>完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从1n的结点一一对应时称之为完全二叉树

假设一颗完全二叉树的高度为h,高度为h的结点个数为x

则总节点的个数:

N = 2^{h}-1-x

h = log_{2}N+1+x

假设树的高度是h,前 h-1 层是

最后一行不满,但 从左往右是连续 

如上图所示就 完全二叉树:深度为 K 的节点中,从首结点到末结点中有 “ 缺口

二叉树的性质 

<1>若规定根节点的层数为 1 ,则一棵非空二叉树的 第i层上最多有 2^{(i-1)}   个结点
<2>若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是  2^{h}-1
<3>对任何一棵二叉树 , 如果度为 0 其叶结点个数为n0  , 度为 2 的分支结点个数为n2, 则有 n0=n2+1
<4>若规定根节点的层数为 1 ,具有n个结点的满二叉树的深度 log_{2}(h+1)
<5>对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0 开始编号,则对
于序号为 i 的结点有:
(1)i>0i位置节点的双亲序号:(i-1)/2i=0i为根节点编号,无双亲节点
(2)2i+1<n,左孩子序号:2i+12i+1>=n否则无左孩子
(3)2i+2<n,右孩子序号:2i+22i+2>=n否则无右孩子

二叉树的存储结构  

 二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构

顺序存储

顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树 ,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。 二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树

链式存储

二叉树的链式存储结构是指,用 链表 来表示一棵二叉树,即用 链来指示元素的逻辑关系 。 通常的方法是链表中每个结点由 三个域 组成, 数据域和左右指针域 左右指针 分别用来给出该结点 左孩子和右孩子所在的链结点的存储地址 。链式结构又分为 二叉链和三叉链
二叉树
typedef char BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;      //指向当前节点左孩子struct BinaryTreeNode* right;     //指向当前节点右孩子BTDataType data;                  //节点中的数据域
}BTNode;
三叉树
typedef char BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* Parent;   //指向当前节点的双亲struct BinaryTreeNode* left;     //指向当前节点左孩子struct BinaryTreeNode* right;    //指向当前节点右孩子BTDataType data;                 //节点中的数据域
}BTNode;

二叉树的遍历 

二叉树遍历 (Traversal): 按照某种特定的规则,依次对二叉 树中的节点进行相应的操作,并且每个节点只操作一次 。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础

按照规则,二叉树的遍历有: 前序 / 中序 / 后序的递归结构遍历
<1> 前序遍历 —— 访问根结点的操作发生在遍历其 左右子树之前
<2>中序遍历 —— 访问根结点的操作发生在遍历其 左右子树之中
<3>后序遍历 —— 访问根结点的操作发生在遍历其 左右子树之后

由于被访问的结点必是某子树的根

所以 N(Node )、 L(Left subtree )和 R(Right subtree)
又可解释为 根、根的左子树和根的右子树
NLR LNR LRN 分别又称为先根遍历、中根遍历和后根遍历

二叉树结构定义 

typedef char BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;         // 第一个孩子结点struct BinaryTreeNode* right;        // 指向其下一个兄弟结点BTDataType data;                     // 结点中的数据域
}BTNode;

 二叉树前序遍历

因为有些节点为空,我们可以选择打印和不打印,为了页面美观我们这里就不打印了

void PrevOrder(BTNode* root)
{if (root == NULL){return;}printf("%c ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}
int main()
{BTNode* A = (BTNode*)malloc(sizeof(BTNode));A->data = 'A';A->left = NULL;A->right = NULL;BTNode* B = (BTNode*)malloc(sizeof(BTNode));B->data = 'B';B->left = NULL;B->right = NULL;BTNode* C = (BTNode*)malloc(sizeof(BTNode));C->data = 'C';C->left = NULL;C->right = NULL;BTNode* D = (BTNode*)malloc(sizeof(BTNode));D->data = 'D';D->left = NULL;D->right = NULL;BTNode* E = (BTNode*)malloc(sizeof(BTNode));E->data = 'E';E->left = NULL;E->right = NULL;BTNode* F = (BTNode*)malloc(sizeof(BTNode));F->data = 'F';F->left = NULL;F->right = NULL;BTNode* G = (BTNode*)malloc(sizeof(BTNode));G->data = 'G';G->left = NULL;G->right = NULL;BTNode* H = (BTNode*)malloc(sizeof(BTNode));H->data = 'H';H->left = NULL;H->right = NULL;BTNode* I = (BTNode*)malloc(sizeof(BTNode));I->data = 'I';I->left = NULL;I->right = NULL;BTNode* J = (BTNode*)malloc(sizeof(BTNode));J->data = 'J';J->left = NULL;J->right = NULL;BTNode* K = (BTNode*)malloc(sizeof(BTNode));K->data = 'K';K->left = NULL;K->right = NULL;A->left = B;A->right = C;B->left = D;B->right = E;D->left = H;D->right = I;C->left = F;C->right = G;F->left = K;E->right = J;PrevOrder(A);printf("\n");system("pause");return 0;
}

以上我们插入树节点数据

代码测试

前序遍历结果:A B D H I E J C F K G

二叉树中序遍历 

void InOrder(BTNode* root)
{if (root == NULL){return;}InOrder(root->left);printf("%c ", root->data);InOrder(root->right);
}

代码测试

中序遍历结果:H D I B E J A F K C G

二叉树后序遍历  

void PostOrder(BTNode* root)
{if (root == NULL){return;}PostOrder(root->left);PostOrder(root->right);printf("%c ", root->data);
}

代码测试

后序遍历结果:H I D J E B K F G C A

二叉树遍历口诀 

二叉树的层序遍历 

层序遍历太简单了,就是按照一层一层的顺序,从左到右写下来就行了

层序遍历结果:A B C D E F G H I J K

层序遍历我们要用到队列,所以我们这里要包一下队列相关的文件

C语言数据结构之线性表-栈和队列篇

void Levelorder(BTNode* root)
{Queue q;QueueInit(&q);//树为空,直接返回if (root == NULL){return;}QueuePush(&q, root);                    //先将根节点入队while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);         //出队保存队头并访问QueuePop(&q);printf("%c  ", front->data);if (front->left)                        //将出队结点的左子树根入队{QueuePush(&q, front->left);}if (front->right)                       //将出队结点的右子树根入队{QueuePush(&q, front->right);}}printf("\n");QueueDestory(&q);                           //销毁队列
}

二叉树结点的个数 

结点的个数的算法左子树的结点加上右子树的结点,最后再加上根结点

int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

代码测试

 二叉树叶子结点的个数

叶子结点的特征左右子树为空,我们可以通过递归的方法遍历每一颗子树

int TreeLeafSizee(BTNode* root)
{if (root == NULL)return 0;//左右为空if (root->left == NULL && root->right == NULL)return 1;return TreeLeafSizee(root->left) + TreeLeafSizee(root->right);
}

我们还是以这个树为例

我们发现有H、I、J、K、G五个左右子树为空,所以叶子结点的个数为5

代码测试

  二叉树的高度

树的高度的定义:从 根开始定义 起,根为第一层,根的孩子为第二层,以此类推

int TreeHeight(BTNode* root)
{if (root == NULL)return 0;int left = TreeHeight(root->left);int right = TreeHeight(root->right);return (left > right ? left : right) + 1;
}

代码测试

二叉树第k层节点个数 

int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

代码测试

如图所示:4层的结点为4,2层的节点为2

二叉树查找值为x的节点 

先对左子树递归查找,如果未找到x,则返回NULL

如果找到x,便返回x所在节点

根据返回值判断是否需要进行右递归查找操作

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL)return NULL;if (root->data == x)return root;if (BinaryTreeFind(root->left, x))return BinaryTreeFind(root->left, x);elsereturn BinaryTreeFind(root->right, x);
}

总结: 

二叉树主要涉及的算法有 递归 分治

递归需要画图理解其真谛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249719.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络编程套接字(2)

TCP 简单的TCP网络程序服务端创建套接字 服务端绑定服务端监听服务端接收连接测试服务端处理请求客户端创建套接字客户端连接服务器客户端连接服务器单执行流的服务器客户端为什么会显示连接成功&#xff1f; 多进程版的TCP网络程序让孙子进程提供服务 多线程版的TCP网络程序 简…

设计模式——模板方法模式(Template Method Pattern)

概述 模板方法模式&#xff1a;定义一个操作中算法的框架&#xff0c;而将一些步骤延迟到子类中。模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。模板方法模式是一种基于继承的代码复用技术&#xff0c;它是一种类行为型模式。模板方法模式是结…

基于node.js和Vue3的医院挂号就诊住院信息管理系统

摘要&#xff1a; 随着信息技术的快速发展&#xff0c;医院挂号就诊住院信息管理系统的构建变得尤为重要。该系统旨在提供一个高效、便捷的医疗服务平台&#xff0c;以改善患者就医体验和提高医院工作效率。本系统基于Node.js后端技术和Vue3前端框架进行开发&#xff0c;利用其…

【Emgu CV教程】6.8、图像平滑之BilateralFilter()双边滤波

文章目录 一、介绍1.原理2.函数介绍 二、举例1.原始素材2.代码3.运行结果 一、介绍 1.原理 BilateralFilter()双边滤波也是非线性滤波&#xff0c;之前介绍的滤波只考虑空间信息&#xff08;滤波核或邻域&#xff09;&#xff0c;容易造成边缘模糊和细节丢失&#xff0c;相比…

在Windows系统中执行DOS命令

目录 一、用菜单的形式进入DOS窗口 二、通过IE浏览器访问DOS窗口 三、复制、粘贴命令行 四、设置窗口风格 1.颜色 2.字体 3.布局 4.选项 五、Windows系统命令行 由于Windows系统彻底脱离了DOS操作系统&#xff0c;所以无法直接进入DOS环境&#xff0c;只能通过第三方软…

UE4学习笔记 FPS游戏制作3 添加武器

文章目录 章节目标为骨骼添加武器挂载点添加武器 章节目标 本章节为手部添加一个武器挂载点&#xff0c;并挂载一个武器 为骨骼添加武器挂载点 添加挂载点需要以一个动画片段为基础&#xff0c;为骨骼添加挂载点。 首先找到我们需要的动画片段&#xff0c;通常是idle 双击打…

c++设计模式之观察者模式(发布-订阅模式)

介绍 观察者模式主要关注于对象的一对多关系&#xff0c;其中多个对象都依赖于一个对象&#xff0c;当该对象的状态发生改变时&#xff0c;其余对象都能接收到相应的通知。 如&#xff0c;现在有 一个数据对象三个画图对象&#xff0c;分别wield曲线图、柱状图、饼状图三个对象…

草图导入3d后模型贴材质的步骤?---模大狮模型网

3D模型在导入草图大师后出现混乱可能有多种原因&#xff0c;以下是一些可能的原因和解决方法&#xff1a; 模型尺寸问题&#xff1a;如果3D模型的尺寸在导入草图大师时与画布尺寸不匹配&#xff0c;可能导致模型混乱。解决方法是在3D建模软件中调整模型的尺寸&#xff0c;使其适…

深入解剖指针篇(2)

目录 指针的使用 strlen的模拟实现 传值调用和传址调用 数组名的理解 使用指针访问数组 一维数组传参的本质 冒泡排序 个人主页&#xff08;找往期文章&#xff09;&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 指针的使用 strlen的模拟实现 库函数strlen的功能是求字符串…

南京观海微电子---如何减少时序报告中的逻辑延迟

1. 引言 在FPGA逻辑电路设计中&#xff0c;FPGA设计能达到的最高性能往往由以下因素决定&#xff1a; ▪ 工作时钟偏移和时钟不确定性&#xff1b; ▪ 逻辑延迟&#xff1a;在一个时钟周期内信号经过的逻辑量&#xff1b; ▪ 网络或路径延迟&#xff1a;Vivado布局布线后引…

多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测

多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测 目录 多输入多输出 | Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络…

C++模板:非类型模板参数、特化以及分离编译

一、非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成…

Linux--Shell基础

学习笔记&#xff0c;记录以下课程中关于Linux的Shell基础知识。 黑马程序员linux入门到精通&#xff08;下部分&#xff09;_哔哩哔哩_bilibili 目录 1.编写规范 2.变量 2.1 变量的含义 2.2 变量的定义和使用 2.3 只读变量&#xff08;了解&#xff09; 2.4 接收用户输入…

Github 2024-02-02开源项目日报Top10

根据Github Trendings的统计&#xff0c;今日(2024-02-02统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目6HTML项目2TypeScript项目2C#项目1JavaScript项目1 ChatGPT提示库 创建周期&#xff1a;424 天开…

用Python处理TDC激光测距数据并绘制为图片

用Python处理TDC激光测距数据并绘制为图片 说明一、定义全局变量变二、主函数入口三、处理原始文件数据四、将数据叠加统计生成图片五、额外的辅助函数六、将数据进行各种形式统计叠加七、原始数据形式八、 测试结果 说明 1. 主要是将TDC激光测距数据进行统计叠加并绘制为图片…

【数据结构(C语言)】树、二叉树详解

目录 文章目录 前言 一、树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用 二、二叉树的概念及结构 2.1 二叉树的概念 2.2 二叉树的基本形态 ​编辑2.3 特殊的二叉树 2.4 二叉树的性质 2.5 二叉树的存储结构 三、二叉树的顺序结…

C语言实现12种排序算法

1.冒泡排序 思路&#xff1a;比较相邻的两个数字&#xff0c;如果前一个数字大&#xff0c;那么就交换两个数字&#xff0c;直到有序。 时间复杂度&#xff1a;O(n^2)&#xff0c;稳定性&#xff1a;这是一种稳定的算法。 代码实现&#xff1a; void bubble_sort(int arr[],…

服务攻防-端口协议桌面应用QQWPS等RCEhydra口令猜解未授权检测

知识点&#xff1a; 1、端口协议-弱口令&未授权&攻击方式等 2、桌面应用-社交类&文档类&工具类等 章节点&#xff1a; 1、目标判断-端口扫描&组合判断&信息来源 2、安全问题-配置不当&CVE漏洞&弱口令爆破 3、复现对象-数据库&中间件&…

【Jenkins】配置及使用|参数化|邮件|源码|报表|乱码

目录 一、Jenkins 二、Jenkins环境搭建 1、下载所需的软件包 2、部署步骤 3、其他 三、Jenkins全局设置 &#xff08;一&#xff09;Manage Jenkins——Tools系统管理->全局工具配置分别配置JDK、Maven、Allure、Git&#xff0c;可以配置路径或者直接选择版本安装 1…

判断当前设备是不是安卓或者IOS?

代码(重要点): 当前文件要是 xxx.js文件,就需要写好代码后调用才会执行: // 判断是不是安卓 const isAndroid () > {return /android/.test(navigator.userAgent.toLowerCase()); }// 判断是不是ios const isIOS () > {return /iphone|ipad|ipod/.test(navigator.use…