Matlab使用点云工具箱进行点云配准ICP\NDT\CPD

一、代码

主代码main.m,三种配准方法任选其一

% 读取点云文件
source_pc = pcread('bun_zipper.ply');
target_pc = pcread('bun_zipper2.ply');% 下采样
ptCloudA = point_downsample(source_pc);
ptCloudB = point_downsample(target_pc);% 配准参数设置
opt = param_set("icp");
% opt = param_set("ndt");
% opt = param_set("cpd");
% 执行点云配准
[tform,translation,rotation,registered_pc] = icp_r(ptCloudA,ptCloudB,source_pc,opt);
% [tform,translation,rotation,registered_pc] = ndt_r(ptCloudA,ptCloudB,source_pc,opt);
% [tform,translation,rotation,registered_pc] = cpd_r(ptCloudA,ptCloudB,opt);
cal_and_print_data(tform,translation,rotation);% 可视化
pc_visualization(ptCloudA, ptCloudB, target_pc, registered_pc);

配准参数设置

function[opt] = param_set(name, varargin)
p = inputParser;
addParameter(p,'Metric','pointToPoint');
addParameter(p,'Extrapolate',true);
addParameter(p,'InlierRatio',0.9);
addParameter(p,'Tolerance',[0.01, 0.01]);
addParameter(p,'MaxIterations',100);
addParameter(p,'Verbose',true);
addParameter(p,'method','rigid');
addParameter(p,'viz',0);
addParameter(p,'max_it',100);
addParameter(p,'tol',1e-6);
parse(p,varargin{:});
Metric = p.Results.Metric;
Extrapolate = p.Results.Extrapolate;
InlierRatio = p.Results.InlierRatio;
Tolerance = p.Results.Tolerance;
MaxIterations = p.Results.MaxIterations;
Verbose = p.Results.Verbose;
method = p.Results.method;
viz = p.Results.viz;
max_it = p.Results.max_it;
tol = p.Results.tol;
opt = containers.Map();
if name=="icp" || name == "ndt"opt('Metric') = Metric;opt('Extrapolate') = Extrapolate;opt('InlierRatio') = InlierRatio;opt('Tolerance') = Tolerance;opt('MaxIterations') = MaxIterations;opt('Verbose') = Verbose;
elseif name == "cpd"opt('method') = method;opt('viz') = viz;opt('max_it') = max_it;opt('tol') = tol;
end

icp函数代码icp_r.m

function [tform,translation,rotation,registered_pc] = icp_r(ptCloudA, ptCloudB, source_pc, opt)% tform 是一个 rigid3d 类型的对象,包含了配准后的转换矩阵。
% 参数说明:
% 'Metric' - 配准的度量类型,可以是 'pointToPoint'(默认值)或 'pointToPlane',
%            'pointToPoint' 直接最小化点之间的距离,
%            'pointToPlane' 最小化点到面的距离,通常更快收敛但需要法线信息。
% 'Extrapolate' - 用于加速算法,如果设置为 true,算法会用前两次迭代的变换来预测下一步的变换。
% 'InlierRatio' - 预期的内点比例,范围从 0 到 1。内点是最有可能对应于固定点云中点的移动点云中的点。
% 'MaxIterations' - ICP算法的最大迭代次数。
% 'Tolerance' - 一个包含两个元素的向量,第一个元素是均方根变化容忍度,第二个元素是最小迭代改变容忍度。
% 'Verbose' - 如果设置为 true,将在命令窗口中显示算法的进度信息。
tform = pcregistericp(ptCloudA,ptCloudB, 'Metric', opt('Metric'), ...'Extrapolate', opt('Extrapolate'), ...'InlierRatio', opt('InlierRatio'), ...'Tolerance', opt('Tolerance'), ...'MaxIterations', opt('MaxIterations'), ...'Verbose', opt('Verbose'));
% 提取平移向量
translation = tform.T(4, 1:3);
% 提取旋转矩阵
rotation = tform.T(1:3, 1:3);
% 应用配准变换到源点云
registered_pc = pctransform(source_pc, tform);end

ndt函数代码ndt_r.m,由于matlab点云工具箱没有提供相关的特征提取函数,所以采用icp粗配准获得初始变换矩阵,再进行ndt精配准

function[tform,translation,rotation,registered_pc] = ndt_r(ptCloudA, ptCloudB, source_pc,opt)
% 使用 ICP 算法进行粗略配准,获取初始变换矩阵
tform = pcregistericp(ptCloudA,ptCloudB, 'Metric', opt('Metric'), ...'Extrapolate', opt('Extrapolate'), ...'InlierRatio', opt('InlierRatio'), ...'Tolerance', opt('Tolerance'), ...'MaxIterations', opt('MaxIterations'), ...'Verbose', opt('Verbose'));
% 使用 NDT 算法进行精确配准
% 参数说明:
% gridSize - 用于创建用于 NDT 算法的体素网格的大小。较小的值可能会提高精度,但会增加计算成本。
% 'MaxIterations' - NDT算法的最大迭代次数。
% 'Tolerance' - 一个包含两个元素的向量:
%               tolerance1 - 迭代之间变换的最大容忍度。
%               tolerance2 - 均方根误差的最大容忍度。
% 'InitialTransform' - 配准之前的初始变换,这是一个 rigid3d 类型的对象。
% 'Verbose' - 如果设置为 true,将在命令窗口中显示算法的进度信息。% tform 是一个 rigid3d 类型的对象,包含了配准后的变换矩阵。
gridStep =0.1; % 网格大小
tform = pcregisterndt(ptCloudA, ptCloudB, gridStep, ...'MaxIterations', opt('MaxIterations'), ...'Tolerance', opt('Tolerance'), ...'InitialTransform', tform, ... % 使用单位矩阵作为初始变换'Verbose', opt('Verbose'));
% 提取平移向量
translation = tform.T(4, 1:3);
% 提取旋转矩阵
rotation = tform.T(1:3, 1:3);
% 应用配准变换到源点云
registered_pc = pctransform(source_pc, tform);
end

cpd函数代码cpd_r.m,这个cpd配准还需要额外的cpd工具箱

function[tform,translation,rotation,registered_pc] = cpd_r(ptCloudA,ptCloudB, opt)
% 转换为双精度的坐标矩阵
X = double(ptCloudA.Location);
Y = double(ptCloudB.Location);
% 设置CPD选项,根据需要调整参数
op.method = opt('method'); % 使用非刚性变换,也可以选择 'rigid' 或 'affine'
op.viz = opt('viz');             % 显示配准过程
op.max_it = opt('max_it');        % 最大迭代次数
op.tol = opt('tol');          % 收敛容忍度% 执行CPD配准
[tform, C] = cpd_register(Y, X, op);
% 提取平移向量
translation = tform.t;% 提取旋转矩阵
rotation = tform.R;
registered_pc = pointCloud(tform.Y);
end

点云下采样

function[ptCloud] = point_downsample(pc)
gridStep = 0.005;
ptCloud = pcdownsample(pc,'gridAverage',gridStep);
end

计算并打印相关位姿信息

function[] = cal_and_print_data(tform,translation,rotation)% 将旋转矩阵转换为欧拉角\四元数
eulerAngles = rotm2eul(rotation);
quat = rotm2quat(rotation);
%打印信息
fprintf('变换矩阵:')
disp(tform)
fprintf('平移量 (x, y, z): %.4f, %.4f, %.4f\n', translation(1), translation(2), translation(3));
fprintf('欧拉角 (rx, ry, rz): %.4f, %.4f, %.4f\n', rad2deg(eulerAngles(3)), rad2deg(eulerAngles(2)), rad2deg(eulerAngles(1)));
fprintf('四元数 (w, x, y, z): %.4f, %.4f, %.4f, %.4f\n', quat(1), quat(2), quat(3), quat(4));
end

可视化

function[] = pc_visualization(ptCloudA, ptCloudB, target_pc, registered_source_pc)
figure("Name", "原图像与配准后的图像");
set(gcf,'position',[150 80 1000 800])
subplot(2,1,1)
pcshowpair(ptCloudA, ptCloudB, 'MarkerSize', 20,'BackgroundColor',"white");
title('原图像');
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
view(2)
legend('Target Point Cloud', 'Source Point Cloud');
%figure("Name", "配准后的图像");
subplot(2,1,2)
pcshowpair(target_pc, registered_source_pc, 'MarkerSize', 20,'BackgroundColor',"white");
title('配准后的图像');
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
view(2)
legend('Target Point Cloud', 'Registered Source Point Cloud');% 调整子图之间的距离
h = gcf; % 获取当前图形的句柄
h.Children(1).Position(2) = h.Children(1).Position(2) + 0.05; % 调整第一个子图的位置
h.Children(2).Position(2) = h.Children(2).Position(2) - 0.05; % 调整第二个子图的位置
end

二、结果

icp结果

ndt结果

cpd结果

三种方法实验下来,两个点云基本都是z轴有45度的相对转角

三、工具箱安装和示例文件

点云工具箱:链接:https://pan.baidu.com/s/1zNo03fIxP63-lOSjePCcLg 
提取码:wstc 

cpd工具箱:链接:https://pan.baidu.com/s/1-Um4pRcYJOAKLWjeuL-zlA 
提取码:wstc 
示例文件:链接:https://pan.baidu.com/s/1ql_q4jnUZjlZL3l3fRo8vQ 
提取码:wstc 

完整代码:matlab点云配准,包括ICP/NDT/CPD算法资源-CSDN文库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/255314.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---自研CPMS注意力,效果优于CBAM ,助力自动驾驶(二)

💡💡💡本文主要内容:详细介绍了暗光低光数据集检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。 💡💡💡加入 自研CPMS注意力 mAP0.5由原始的0.682提升…

大型语言模型(LLM)的优势、劣势和风险

最近关于大型语言模型的奇迹()已经说了很多LLMs。这些荣誉大多是当之无愧的。让 ChatGPT 描述广义相对论,你会得到一个非常好(且准确)的答案。然而,归根结底,ChatGPT 仍然是一个盲目执行其指令集…

使用UMAP降维可视化RAG嵌入

大型语言模型(LLMs)如 GPT-4 已经展示了出色的文本理解和生成能力。但它们在处理领域特定信息方面面临挑战,比如当查询超出训练数据范围时,它们会产生错误的答案。LLMs 的推理过程也缺乏透明度,使用户难以理解达成结论…

【Linux】make和Makefile

目录 make和Makefile make和Makefile 我们使用vim编辑器的时候,在一个文件里写完代码要进行编译,要自己输入编译的指令。有没有一种可以进行自动化编译的方法——makefile文件,它可以指定具体的编译操作,写好makefile文件&#x…

新零售的升维体验,摸索华为云GaussDB如何实现数据赋能

新零售商业模式 商业模式通常是由客户价值、企业资源和能力、盈利方式三个方面构成。其最主要的用途是为实现客户价值最大化。 商业模式通过把能使企业运行的内外各要素整合起来,从而形成一个完整的、高效率的、具有独特核心竞争力的运行系统,并通过最…

【el-tree 文字过长处理方案】

文字过长处理方案 一、示例代码二、关键代码三、效果图 一、示例代码 <divstyle"height: 600px;overflow: auto"class"text item"><el-treeref"tree":data"treeData":props"defaultProps"class"filter-tree&…

fast.ai 深度学习笔记(四)

深度学习 2&#xff1a;第 2 部分第 8 课 原文&#xff1a;medium.com/hiromi_suenaga/deep-learning-2-part-2-lesson-8-5ae195c49493 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 来自 fast.ai 课程的个人笔记。随着我继续复习课程以“真正”理解它&#xff0c;这…

6.0 Zookeeper session 基本原理详解教程

客户端与服务端之间的连接是基于 TCP 长连接&#xff0c;client 端连接 server 端默认的 2181 端口&#xff0c;也就 是 session 会话。 从第一次连接建立开始&#xff0c;客户端开始会话的生命周期&#xff0c;客户端向服务端的ping包请求&#xff0c;每个会话都可以设置一个…

数据分析基础之《pandas(6)—高级处理》

一、缺失值处理 1、如何处理nan 两种思路&#xff1a; &#xff08;1&#xff09;如果样本量很大&#xff0c;可以删除含有缺失值的样本 &#xff08;2&#xff09;如果要珍惜每一个样本&#xff0c;可以替换/插补&#xff08;计算平均值或中位数&#xff09; 2、判断数据是否…

爬虫练习——动态网页的爬取(股票和百度翻译)

动态网页也是字面意思&#xff1a;实时更新的那种 还有就是你在股票这个网站上&#xff0c;翻页。他的地址是不变的 是动态的加载&#xff0c;真正我不太清楚&#xff0c;只知道他是不变的。如果用静态网页的方法就不可行了。 静态网页的翻页&#xff0c;是网址是有规律的。 …

【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理

摘要 | Abstract TO-BE-FILLED 1.前言 | Introduction 近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型&#xff0c;但是尽管网络上有许多关于DNN-HMM的介绍&#xff0c;如李宏毅教授的《深度学习人类语言处理》[1]&#xff0c;…

office 2021安装教程(官方自动批量激活,无付费)

全程不需要第三方软件&#xff0c;所有用到的工具都是微软官方的&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 基于KMS的 GVLK&#xff1a;https://learn.microsoft.com/zh-cn/deployoffice/vlactivation/gvlks 首先我们需要去下载 office 软件部署工具&a…

二、数据结构

链表 单链表 https://www.acwing.com/problem/content/828/ #include<iostream> using namespace std; const int N 1e5 10; //head:头节点的指向 e[i]:当前节点i的值 ne[i]:当前节点i的next指针 idx:当前存储的点 int head, e[N], ne[N], idx;//初始化 void i…

01动力云客之环境准备+前端Vite搭建VUE项目入门+引入Element PLUS

1. 技术选型 前端&#xff1a;Html、CSS、JavaScript、Vue、Axios、Element Plus 后端&#xff1a;Spring Boot、Spring Security、MyBatis、MySQL、Redis 相关组件&#xff1a;HiKariCP&#xff08;Spring Boot默认数据库连接池&#xff09;、Spring-Data-Redis&#xff08;S…

【多模态大模型】视觉大模型SAM:如何使模型能够处理任意图像的分割任务?

SAM&#xff1a;如何使模型能够处理任意图像的分割任务&#xff1f; 核心思想起始问题: 如何使模型能够处理任意图像的分割任务&#xff1f;5why分析5so分析 总结子问题1: 如何编码输入图像以适应分割任务&#xff1f;子问题2: 如何处理各种形式的分割提示&#xff1f;子问题3:…

43.1k star, 免费开源的 markdown 编辑器

简介 项目名&#xff1a; MarkText-- 简单而优雅的开源 Markdown 编辑器 Github 开源地址&#xff1a; https://github.com/marktext/marktext 官网&#xff1a; https://www.marktext.cc/ 支持平台&#xff1a; Linux, macOS 以及 Windows。 操作界面&#xff1a; 在操作界…

vueRouter中Hash模式和History模式有什么区别

VueRouter是Vue.js官方推荐的前端路由库&#xff0c;它提供了一种方便的方式来构建单页应用&#xff08;SPA&#xff09;。在使用VueRouter时&#xff0c;我们可以选择不同的路由模式&#xff0c;其中最常见的是Hash模式和History模式。本文将深入探讨这两种模式的区别&#xf…

资产管理系统技术架构设计与实现

资产管理系统在现代金融领域扮演着至关重要的角色。它不仅帮助机构有效管理和优化资产配置&#xff0c;还提供了风险控制、绩效评估等功能。本文将探讨资产管理系统的技术架构设计与实现&#xff0c;以帮助读者深入了解该系统&#xff0c;并为其开发和部署提供参考。 1. 概述资…

【算法与数据结构】496、503、LeetCode下一个更大元素I II

文章目录 一、496、下一个更大元素 I二、503、下一个更大元素II三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、496、下一个更大元素 I 思路分析&#xff1a;本题思路和【算法与数据结构】739、LeetCode每日温度类似…

spring boot和spring cloud项目中配置文件application和bootstrap中的值与对应的配置类绑定处理

在前面的文章基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136065211 加载完文件转换为 Environment 中对应的值之后&#xff0c;接下来需要将对应的值与对应的配置类进行绑定&#xff0c;方便对应的组件取值处理接下来的操作。 对应的配置值与配置类绑定通过 Con…