Stable Diffusion 3 Early Preview发布

2月22日,Stability AI 发布了 Stable Diffusion 3 early preview,这是一种开放权重的下一代图像合成模型。据报道,它继承了其前身,生成了详细的多主题图像,并提高了文本生成的质量和准确性。这一简短的公告并未附带公开演示,但 Stability今天为那些想尝试的人开放了Waitlist,想等着尝鲜的同学可以注册加入Waitlist。

Waitlist地址:SD 3 Waitlist — Stability AI

Stability 表示,其 Stable Diffusion 3 系列模型(采用称为“prompt”的文本描述并将其转换为匹配图像)的参数大小从 8 亿到 80 亿不等。尺寸范围允许模型的不同版本在各种设备(从智能手机到服务器)上本地运行。参数大小大致对应于模型可以生成多少细节的能力。较大的模型还需要 GPU 加速器上有更多 VRAM 才能运行。

自 2022年以来,我们看到 Stability 推出了一系列 AI 图像生成模型:Stable Diffusion 1.4、1.5、2.0、2.1 、 XL 、 XL Turbo ,现在是 3。Stability 因提供更开放的替代方案而闻名,例如,类似OpenAI 的 DALL-E 3 这样的专有图像合成模型。尽管由于使用受版权保护的训练数据、偏见和滥用的可能性而引起争议,并导致了一些未解决的诉讼。Stable Diffusion模型是开放权重且源可用的,这意味着模型可以在本地运行并进行微调以改变其输出。

Stable Diffusion 3的技术改进

就技术改进而言,Stability 首席执行官 Emad Mostaque在 X 上写道:“这使用了新型Diffusion Transformer(类似于Sora),并结合了流量匹配(flow matching)和其他改进。这利用了Transformer的改进,不仅可以进一步扩展,还能够接受多模式输入。”

正如 Mostaque 所说,Stable Diffusion 3 系列使用Diffusion Transformer架构,这是一种利用 AI 创建图像的新方法,它将常用的图像构建块(例如U-Net 架构)替换为适用于小块图像的系统。该方法的灵感来自于擅长处理模式和序列的Transformer。这种方法不仅可以有效地扩大规模,而且据报道还可以产生更高质量的图像。

Stable Diffusion 3 还利用了流匹配(flow matching),这是一种创建 AI 模型的技术,该模型可以通过学习如何从随机噪声平滑过渡到结构化图像来生成图像。它不需要模拟过程的每个步骤,而是专注于图像创建应遵循的总体方向或流程。

我们目前还无法访问 Stable Diffusion 3 (SD3),但从我们在 Stability 网站和相关社交媒体帐户上发布的样本来看,这几代模型似乎与目前其他最先进的图像合成模型大致相当,包括前面提到的DALL-E 3、Adobe Firefly、Imagine with Meta AI、Midjourney和Google Imagen。

在Stability AI提供的示例中,SD3 可以很好地处理文本生成。文本生成是早期图像合成模型的一个特别弱点,因此在免费模型中改进该功能是一件大事。此外,提示保真度(它遵循提示中的描述的程度)似乎与 DALL-E 3 类似,但我们还没有自己测试过。

虽然 Stable Diffusion 3 尚未广泛使用,但 Stability 表示,一旦测试完成,其权重将可以免费下载并在本地运行。Stability 写道:“与之前的模型一样,这个预览阶段对于收集见解以在公开发布之前提高其性能和安全性至关重要。”

Stability 最近一直在尝试各种图像合成架构。除了 SDXL 和 SDXL Turbo 之外,就在上周,该公司还发布了Stable Cascade,它使用三阶段过程进行文本到图像的合成。

Flow Matching介绍

Flow Matching是Stable Diffusion 3中一个重要的技术改进。目前很多文生图模型使用的是CNF(连续正规化流动)训练方法,主要使用常微分方程对流动进行建模,实现从一种已知分布到目标分布的平滑映射。Stable Diffusion 3的Flow Matching基于“Flow Matching for Generative Modeling”,abs: https://arxiv.org/abs/2210.02747。

CNF的训练过程需要进行大量的微分方程模拟,会导致算力成本高、模型设计复杂、可解释性差等缺点。FM则是放弃微分方程的直接模拟,而是通过回归固定条件概率轨迹来实现无模拟训练。研究人员设计了条件概率分布与向量场的概念,利用边缘分布的结合可以建立总体目标概率轨迹与向量场,从而消除了模拟过程对梯度计算的影响

1)条件概率路径构建:FM需要给出一个目标概率路径,该路径从简单分布演变到逼近数据分布。然后利用条件概率路径构建了目标路径,这样每个样本有一个对应的条件路径。

2)变换层:构成FM的基本单元,每个变换层都是可逆的。这意味着从输入到输出的每一步映射都可以精确地反转,从而允许从目标分布反推到原始分布。

3)耦合层:将输入分成两部分,对其中一部分应用变换,而变换函数可以是任意的神经网络,其参数由另一部分决定,保证了变换的可逆性。

目前,FM技术已在图像生成与超分辨率、图像理解、图像修复与填充、条件图像生成、图像风格迁移与合成、视频处理等领域得到广泛应用。

Stable Diffusion 3文生图展示

声明:以下的prompt和图片均来自StabilityAI官方和互联网,本人还在Waitlist无法亲自测试。

Prompt: Epic anime artwork of a wizard atop a mountain at night casting a cosmic spell into the dark sky that says "Stable Diffusion 3" made out of colorful energy

Prompt: cinematic photo of a red apple on a table in a classroom, on the blackboard are the words "go big or go home"

Prompt: a painting of an astronaut riding a pig wearing a tutu holding a pink umbrella, on the ground next to the pig is a robin bird wearing a top hat, in the corner are the words "stable diffusion"

Prompt: studio photograph closeup of a chameleon over a black background

Prompt: night photo of a sports car with the text "SD3" on the side, the car is on a race track at high speed, a hug road sign with the text "faster"

Prompt: Photo of an 90's desktop computer on a work desk, on the computer screen it says "welcome". On the wall in the background we see
beautiful graffiti with the text "SD3" very large on the wall

Prompt: Three transparent glass bottles on a wooden table. The one on the left has red liquid and the number 1. The one in the middle has blue liquid and the number 2. The one on the right has green liquid and the number 3.

作者Blog原文:Stable Diffusion 3 Early Preview发布 - HY's Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/262707.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无人机的视频图传技术

在操控无人机时,视频图传技术显得尤为关键。通过这项技术,无人机的摄像头所捕捉的画面能实时回传至遥控器,使操作者全面掌握无人机的拍摄情况。同时,无人机图传技术也是衡量无人机性能的重要标准,它关乎飞行距离与时间…

spring boot3登录开发-3(账密登录逻辑实现)

⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 🌊山高路远,行路漫漫,终有归途。 目录 前置条件 内容简介 用户登录逻辑实现 创建交互对象 1.创建用户登录DTO 2.创建用户登录VO 创建自定义登录业务异…

QT问题 打开Qt Creator发现没有菜单栏

之前不知道按了什么快捷键,当我再次打开Qt Creator时发现菜单栏消失啦 找了许多原因发现:安装有道词典的快捷键Ctrl Alt m 与Qt Creator里的快捷键冲突导致菜单栏被莫名其妙的隐藏 解决方法: 1找到有道词典快捷键 2再次按快捷键 Ctrl Alt m就可以重新显示菜单栏

板块一 Servlet编程:第六节 HttpSession对象全解 来自【汤米尼克的JAVAEE全套教程专栏】

板块一 Servlet编程:第六节 HttpSession对象全解 一、什么是HttpSessionSession的本质 二、创建Seesion及常用方法三、Session域对象四、Session对象的销毁 在上一节中,我们学习了Servlet五大对象里的第三个Cookie对象,但Cookie是有大小限制和…

nginx-------- 高性能的 Web服务端 (三) 验证模块 页面配置

一、http设置 1.1 验证模块 需要输入用户名和密码 htpasswd 此命令来自于 httpd-tools 包,如果没有安装 安装一下即可 也可以安装httpd 直接yum install httpd -y 也一样 第一次生成文件htpasswd -c 文件路径 姓名 交互式生成密码 htpasswd -bc 文…

【python】爬取知乎热榜Top50保存到Excel文件中【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 一、导入必要的模块: 这篇博客将介绍如何使用Python编写一个爬虫程序,从斗鱼直播网站上获取图片信息并保存到本地。我们将使用requests模块发送HTTP请求和接收响应,以及os模块处理文件…

R的seurat和python的scanpy对比学习

现在的单细胞分析,往往避免不了scanpy的使用,我们可以通过对比seurat来学习scanpy 今天的格式怎么都改不了。。。手机阅读有点费劲,,推荐电脑阅读。 单细胞数据分析概览 单细胞分析,总流程 python教程 seurat教程 se…

CSP-J 2023 T1 小苹果

文章目录 题目题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 题目传送门题解思路总代码 提交结果尾声 题目 题目描述 小 Y 的桌子上放着 n n n 个苹果从左到右排成一列,编号为从 1 1 1 到 n n n。 小苞是小 Y 的好朋友,每天她都会从…

文心一言4.0 VS ChatGPT4.0 图片生成能力大比拼!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

欢迎 Gemma: Google 最新推出开源大语言模型

今天,Google 发布了一系列最新的开放式大型语言模型 —— Gemma!Google 正在加强其对开源人工智能的支持,我们也非常有幸能够帮助全力支持这次发布,并与 Hugging Face 生态完美集成。 Gemma 提供两种规模的模型:7B 参数…

BUUCTF crypto做题记录(8)新手向

一、密码学心声 得到信息如下图 背景故事没什么信息,主要看曲谱。大概率不会让我们涉及与音乐有关的内容,题目中也提示说答案是一串字符串,所以我们可以猜测是将曲谱上的数字转化成字符。曲谱中文字提示是用ASCII码进行转换。没有数字8可能是…

PostMan使用自带js库base64编码、sha256摘要、环境变量的使用

目录 1、环境变量的使用2、base64编码、sha256摘要、以及脚本的使用3、脚本代码 在请求调试接口的过程中,因为要使用大量相同的参数,使用变量的方式能很大程度上减轻接口调用的工作量 版本说明:Postman for Windows,Version&#…

【初中生讲机器学习】11. 回归算法中常用的模型评价指标有哪些?here!

创建时间:2024-02-19 最后编辑时间:2024-02-23 作者:Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏,很高兴遇见你~ 我是 Geeker_LStar,一名初三学生,热爱计算机和数学,我们一起加…

【C++私房菜】面向对象中的多重继承以及菱形继承

文章目录 一、多重继承1、多重继承概念2、派生类构造函数和析构函数 二、菱形继承和虚继承2、虚继承后的构造函数和析构函数 三、has-a 与 is-a 一、多重继承 1、多重继承概念 **多重继承(multiple inheritance)**是指从多个直接基类中产生派生类的能力…

flink内存管理,设置思路,oom问题,一文全

flink内存管理 1 内存分配1.1 JVM 进程总内存(Total Process Memory)1.2 Flink 总内存(Total Flink Memory)1.3 JVM 堆外内存(JVM Off-Heap Memory)1.4 JVM 堆内存(JVM Heap Memory)…

高并发系统实战课个人总结(极客时间)

高并发系统实战课 场景 读多写少 我会以占比最高的“读多写少”系统带你入门,梳理和改造用户中心项目。这类系统的优化工作会聚焦于如何通过缓存分担数据库查询压力,所以我们的学习重点就是做好缓存,包括但不限于数据梳理、做数据缓存、加缓…

axios是如何实现的(源码解析)

1 axios的实例与请求流程 在阅读源码之前,先大概了解一下axios实例的属性和请求整体流程,带着这些概念,阅读源码可以轻松不少! 下图是axios实例属性的简图。 可以看到axios的实例上,其实主要就这三个东西&#xff1a…

CLion 2023:专注于C和C++编程的智能IDE mac/win版

JetBrains CLion 2023是一款专为C和C开发者设计的集成开发环境(IDE),它集成了许多先进的功能,旨在提高开发效率和生产力。 CLion 2023软件获取 CLion 2023的智能代码编辑器提供了丰富的代码补全和提示功能,使您能够更…

基于Java+小程序点餐系统设计与实现(源码+部署文档)

博主介绍: ✌至今服务客户已经1000、专注于Java技术领域、项目定制、技术答疑、开发工具、毕业项目实战 ✌ 🍅 文末获取源码联系 🍅 👇🏻 精彩专栏 推荐订阅 👇🏻 不然下次找不到 Java项目精品实…

FairyGUI × Cocos Creator 3.x 场景切换

前言 前文提要: FariyGUI Cocos Creator 入门 FairyGUI Cocos Creator 3.x 使用方式 个人demo:https://gitcode.net/qq_36286039/fgui_cocos_demo_dust 个人demo可能会更新其他代码,还请读者阅读本文内容,自行理解并实现。 官…