挑战杯 基于机器学习与大数据的糖尿病预测

文章目录

  • 1 前言
  • 1 课题背景
  • 2 数据导入处理
  • 3 数据可视化分析
  • 4 特征选择
    • 4.1 通过相关性进行筛选
    • 4.2 多重共线性
    • 4.3 RFE(递归特征消除法)
    • 4.4 正则化
  • 5 机器学习模型建立与评价
    • 5.1 评价方式的选择
    • 5.2 模型的建立与评价
    • 5.3 模型参数调优
    • 5.4 将调参过后的模型重新进行训练并与原模型比较
  • 6 总结

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习与大数据的糖尿病预测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

本项目的目的主要是对糖尿病进行预测。主要依托某医院体检数据(处理后),首先进行了数据的描述性统计。后续针对数据的特征进行特征选择(三种方法),选出与性别、年龄等预测相关度最高的几个属性值。此后选择Logistic回归、支持向量机和XGBoost三种机器学习模型,将选择好的属性值输入对糖尿病风险预警模型进行训练,并运用F1-Score、AUC值等方法进行预警模型的分析评价。最后进行了模型的调参(GridSearch),选择了最优参数输入模型,对比后发现模型性能得到了一定提升。

2 数据导入处理

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
import warnings
warnings.filterwarnings("ignore")
# 显示所有列
pd.set_option('display.max_columns', None)
# 显示所有行
pd.set_option('display.max_rows', None)
plt.rcParams['font.sans-serif'] = ['KaiTi']
plt.rcParams['axes.unicode_minus'] = False
xls1=pd.ExcelFile(r'/home/mw/input/6661075/dia.xls')
dataConcat1=pd.read_excel(xls1)
dataConcat1.head()

在这里插入图片描述

为了后续更好地将数据输入机器学习模型,有必要将某些数据列进行分桶

#%matplotlib notebook #交互式图表
age=dataConcat1['年龄']
age_binary=pd.cut(age,[0,30,45,60,100],labels=[0,1,2,3],right=False)
dataConcat1['年龄_cut']=age_binary
dataConcat1['年龄_cut']=dataConcat1['年龄_cut'].astype("float")pulse=dataConcat1['脉搏']
pulse_binary=pd.cut(pulse,[0,60,99,200],labels=[0,1,2],right=False)
#right:bool型参数,默认为True,表示是否包含区间右部。比如如果bins=[1,2,3],right=True,则区间为(1,2],(2,3];right=False,则区间为(1,2),(2,3)
dataConcat1['脉搏']=pulse_binary
dataConcat1['脉搏']=dataConcat1['脉搏'].astype("float")pressure=dataConcat1['舒张压']
pressure_binary=pd.cut(pressure,[0,60,89,200],labels=[0,1,2],right=False)
dataConcat1['舒张压']=pressure_binary
dataConcat1['舒张压']=dataConcat1['舒张压'].astype("float")dataConcat1.head()

在这里插入图片描述

3 数据可视化分析

fig=plt.figure(figsize=(12,30))plt.subplots_adjust(wspace = 0.4,hspace = 0.4 )  #调整子图内部间距
a2=plt.subplot2grid((5,2),(0,0),colspan=2) 
diabetes_0_1 = dataConcat1.体重检查结果[dataConcat1.是否糖尿病 == 0].value_counts()
diabetes_1_1 = dataConcat1.体重检查结果[dataConcat1.是否糖尿病 == 1].value_counts()
df1=pd.DataFrame({'糖尿病患者':diabetes_1_1,'正常人':diabetes_0_1})
weight_map={0:'较瘦',1:'正常',2:'偏重',3:'肥胖'}
df1.index = df1.index.map(weight_map)
a2.bar(['较瘦','正常','偏重','肥胖'],df1['糖尿病患者'])
a2.bar(['较瘦','正常','偏重','肥胖'],df1['正常人'])
plt.title(u"BMI不同的人患糖尿病情况")
plt.xlabel(u"体重检查结果") 
plt.ylabel(u"人数")
plt.legend((u'糖尿病', u'正常人'),loc='best')a1=plt.subplot2grid((5,2),(1,0)) 
diabetes_0 = dataConcat1.性别[dataConcat1.是否糖尿病 == 0].value_counts()
diabetes_1 = dataConcat1.性别[dataConcat1.是否糖尿病 == 1].value_counts()
df=pd.DataFrame({'糖尿病患者':diabetes_1,'正常人':diabetes_0})
sex_map={1:'男',0:'女'}
df.index = df.index.map(sex_map)
a1.bar(['男','女'],df['糖尿病患者'])
a1.bar(['男','女'],df['正常人'],bottom=list(df.loc[:,'糖尿病患者']))
plt.title(u"男女患糖尿病情况")
plt.xlabel(u"性别") 
plt.ylabel(u"人数") 
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(1,1)) 
dataConcat1.年龄[dataConcat1.是否糖尿病 == 1].plot(kind='kde')   
dataConcat1.年龄[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"年龄")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"糖尿病和正常人年龄分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(2,0)) 
dataConcat1.高密度脂蛋白胆固醇[dataConcat1.是否糖尿病 == 1].plot(kind='kde') 
dataConcat1.高密度脂蛋白胆固醇[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"高密度脂蛋白胆固醇")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"高密度脂蛋白胆固醇分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(2,1)) 
dataConcat1.低密度脂蛋白胆固醇[dataConcat1.是否糖尿病 == 1].plot(kind='kde') 
dataConcat1.低密度脂蛋白胆固醇[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"低密度脂蛋白胆固醇")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"低密度脂蛋白胆固醇分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(3,0)) 
dataConcat1.极低密度脂蛋白胆固醇[dataConcat1.是否糖尿病 == 1].plot(kind='kde') 
dataConcat1.极低密度脂蛋白胆固醇[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"极低密度脂蛋白胆固醇")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"极低密度脂蛋白胆固醇分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(3,1)) 
dataConcat1.尿素氮[dataConcat1.是否糖尿病 == 1].plot(kind='kde') 
dataConcat1.尿素氮[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"尿素氮")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"尿素氮分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(4,0)) 
dataConcat1.尿酸[dataConcat1.是否糖尿病 == 1].plot(kind='kde') 
dataConcat1.尿酸[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"尿酸")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"尿酸分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')plt.subplot2grid((5,2),(4,1)) 
dataConcat1.肌酐[dataConcat1.是否糖尿病 == 1].plot(kind='kde') 
dataConcat1.肌酐[dataConcat1.是否糖尿病 == 0].plot(kind='kde')
plt.xlabel(u"肌酐")# plots an axis lable
plt.ylabel(u"密度") 
plt.title(u"肌酐分布")
plt.legend((u'糖尿病', u'正常人'),loc='best')

在这里插入图片描述
在这里插入图片描述
从基本的描述性统计中,我们可以发现糖尿病人与正常人之间的的一些差异,比如体重指数较高,高密度脂蛋白胆固醇较低,尿素氮和尿酸较高等。

4 特征选择

4.1 通过相关性进行筛选

无论算法是回归(预测数字)还是分类(预测类别),特征都必须与目标相关。 如果一个特征没有表现出相关性,它就是一个主要的消除目标。
可以分别测试数值和分类特征的相关性。

#属性热力如果模型仅用于预测,则只要拟合程度好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不影响预测结果。图
plt.figure(figsize=(10,8))
df_cor=dataConcat1.iloc[:,1:-1]
df_cor.corr()
data_cor=df_cor.corr()
mask = np.triu(np.ones_like(data_cor, dtype=np.bool))
# adjust mask and df
mask = mask[1:, :-1]
corr = data_cor.iloc[1:, :-1].copy()
# color map
cmap = sns.diverging_palette(0, 230, 90, 60, as_cmap=True)
sns.heatmap(corr,mask=mask, annot=True, fmt=".2f", cmap=cmap,linewidth=3,vmin=-1, vmax=1, cbar_kws={"shrink": .8},square=True)
plt.title('属性热力图')
plt.tight_layout()#调整布局防止显示不全

在这里插入图片描述

4.2 多重共线性

当任何两个特征之间存在相关性时,就会出现多重共线性。 在机器学习中,期望每个特征都应该独立于其他特征,即它们之间没有共线性。

4.1中的Heatmap 是检查和寻找相关特征的最简单方法。

此外方差膨胀因子 (VIF) 是衡量多重共线性的另一种方法。 它被测量为整体模型方差与每个独立特征的方差的比率。计算公式如下:

在这里插入图片描述

其中,在这里插入图片描述为自变量对其余自变量作回归分析的负相关系数。
一个特征的高VIF表明它与一个或多个其他特征相关。 根据经验,VIF大于10,则代表变量有较严重的多重共线性。

注意:如果模型仅用于预测,则只要拟合程度好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不影响预测结果。

from statsmodels.stats.outliers_influence import variance_inflation_factor 
feature_names = ['性别', '年龄_cut', '低密度脂蛋白胆固醇','高密度脂蛋白胆固醇','极低密度脂蛋白胆固醇','甘油三酯', '总胆固醇', '脉搏', '舒张压','高血压史','尿素氮','尿酸','肌酐','体重检查结果']
X=dataConcat1[feature_names]
y=dataConcat1.是否糖尿病
# 计算 VIF 
vif = pd.Series([variance_inflation_factor(X.values, i) for i in range(X.shape[1])], index=X.columns) 
# 展示VIF结果
index = X.columns.tolist() 
vif_df = pd.DataFrame(vif, index = index, columns = ['vif']).sort_values(by = 'vif', ascending=False) 
vif_df

在这里插入图片描述

4.3 RFE(递归特征消除法)

使用RFE进行特征选择:RFE是常见的特征选择方法,也叫递归特征消除。它的工作原理是递归删除特征,并在剩余的特征上构建模型。它使用模型准确率来判断哪些特征(或特征组合)对预测结果贡献较大。

2000 年,Weston G.等人在对研究对癌症进行分类时,提出了SVM-RFE特征选择算法并应用到癌症分类。作为一种经典的包裹式特征选择方法,SVM-
RFE特征选择算法也曾被广泛用于医学预测问题的特征选择,并取得良好的选择效果。SVM-RFE
算法使用SVM算法作为基模型,对数据集中的特征进行排序,然后使用递归特征消除算法将排序靠后特征消除,以此实现特征选择。SVM的介绍与推导在2.1.2节有所提及,下面对该算法的实现步骤进行总结。其算法的实现步骤如下:

**①输入原始特征集Q =(Q1,Q2,…,Qm);

②初始化目标特征集= q;

③根据Q对支持向量机进行训练,得到所有特征的权重,将其进行平方处理后并按照降序对特征进行排名;

④不断对步骤迭代,直到留下最后一个属性特征,更新;

⑤若得到的目标特征集Q*模型的拟合程度不再继续增加,MSE不再继续降低,则算法结束,所得的n个特征即为所选择的n个特征,否则,转③。**

#递归特征消除法,返回特征选择后的数据
#参数estimator为基模型
#参数n_features_to_select为选择的特征个数
min_max_scaler1 = preprocessing.MinMaxScaler()
X_train_minmax1 = min_max_scaler1.fit_transform(dataConcat1[feature_names])#特征归一化处理
svc = SVC(kernel="linear")
selector=RFE(estimator=svc, n_features_to_select=8)
Xt=selector.fit_transform(X_train_minmax1,dataConcat1.是否糖尿病)
print("N_features %s" % selector.n_features_) # 保留的特征数
print("Support is %s" % selector.support_) # 是否保留
print("Ranking %s" % selector.ranking_) # 重要程度排名
for i in zip(selector.ranking_,feature_names,selector.support_):print(i)

在这里插入图片描述

4.4 正则化

正则化减少了过拟合。 如果你有太多的特征,正则化控制它们的效果,或者通过缩小特征系数(称为 L2 正则化)或将一些特征系数设置为零(称为 L1
正则化)。一些模型具有内置的 L1/L2 正则化作为超参数来惩罚特征。 可以使用转换器 SelectFromModel 消除这些功能。这里实现一个带有惩罚
= ‘l1’ 的 LinearSVC 算法。 然后使用 SelectFromModel 删除一些功能。

model = LinearSVC(penalty= 'l1', C = 0.1,dual=False) 
model.fit(X,y) 
# 特征选择
# L1惩罚项的SVC作为基模型的特征选择,也可以使用threshold(权值系数之差的阈值)控制选择特征的个数
selector = SelectFromModel(estimator = model, prefit=True,max_features=8)
X_new = selector.transform(X) 
feature_names = np.array(X.columns) 
feature_names[selector.get_support()]#获取选择的变量

在这里插入图片描述

经过特征筛选,最终决定筛选年龄_cut,高密度脂蛋白胆固醇,舒张压,脉搏,尿素氮,体重检查结果,性别,甘油三酯作为后续机器学习模型输入。

5 机器学习模型建立与评价

5.1 评价方式的选择

对于不同的预测问题,选择一个好的评价标准将会大大提高模型对实际问题的适应性,从而选出最合适的模型。一般来说,各种模型评价的方式都与混淆矩阵(confusion
matrix)有很大的关系。混淆矩阵是对一个模型进行评价与衡量的一个标准化的表格,具体形式如下表所示。以糖尿病预测为例,其中第一行的和为实际患糖尿病的总人数,第二行的和为实际未患糖尿病的总人数,第一列的和为经过模型预测后预测标签为患糖尿病的总人数,第二列的和为经过模型预测后预测标签为未患糖尿病的总人数。
在这里插入图片描述
准确率、精确率和召回率在各个预测场景下都是是评价一个模型预测效果的重要参考指标。精确率是针对机器学习预测结果而言的,召回率是针对原来的样本的标签来说的。对于糖尿病标注这个预测问题来说,精确率(Precision)表示的是预测糖尿病为阳性的样本中有多少是真正的阳性样本,而召回率(Recall)则是表示标签糖尿病为阳性的样本例有多少被预测为阳性。
精确率和召回率在某些情况下,尤其是在某些医学场景下并不能对机器学习模型的预测能力和预测效率进行全面的评价,有些情况下会造成模型评价的严重偏倚,不能很好衡量这个分类器的效果,从而造成对使用和评价模型人员的误导。为了解决这个问题,一个比较常见且较为简单的方法就是F-
Measure,也就是通过计算F1-Score(F1值)来评价一个模型的预测效果。

roc曲线可以很容易地查出一个分类器在某个阈值时对样本的识别能力。进行ROC分析所需要的工具和准备并不繁琐,利用二维平面上的带有两个坐标轴来绘制曲线便可进行ROC分析。其中曲线坐标轴的横轴(x轴)为FPR(False
Positive Rate,假正率),代表训练出的分类器预测的阴性样本中实际的阴性样本占所有实际阴性样本的比重;竖轴(y轴)为TPR(True
Positive Rate,真正率),即前述的召回率(Recall),代表训练出的分类器预测的阳性样本中实际阳性样本占所有实际阳性样本的比重。

对于某个模型来说,模型在测试集的表现不同,便可以得到多对不同的TPR和FPR值,进一步在图中映射成一个在ROC曲线上的点。在图中预测模型分类时所使用的阈值是在不断变化和调整的,根据阈值的变化,便可以绘制一个经过点(0,
0)和点(1, 1)的曲线,也就是这个模型的ROC曲线。AUC(Area Under
Curve)是与ROC曲线息息相关的一个值,代表位于ROC曲线下方面积的总和占整个图(一个正方形)总面积的比例。AUC值的大小存在一个范围,一般是在0.5到1.0之间上下浮动。当AUC=0.5时,代表这个模型的分类效果约等于随机分类的效果,而模型的AUC值越大,代表这个模型的分类表现越好。部分指标计算公式如下所示。
在这里插入图片描述

5.2 模型的建立与评价

select_features=[ '年龄_cut','高密度脂蛋白胆固醇','舒张压','脉搏','尿素氮','体重检查结果',"性别","甘油三酯"]
X1 = dataConcat1[select_features]#变量筛选后的特征
y1 = dataConcat1.是否糖尿病
train_X, val_X, train_y, val_y = train_test_split(X1, y1, random_state=1)
model_logistics = LogisticRegression()
model_logistics.fit(train_X,train_y)
y_pred = model_logistics.predict(val_X)
scores_logistics=[]
scores_logistics.append(precision_score(val_y, y_pred))
scores_logistics.append(recall_score(val_y, y_pred))
confusion_matrix_logistics=confusion_matrix(val_y,y_pred)
f1_score_logistics=f1_score(val_y, y_pred,labels=None, pos_label=1, average='binary', sample_weight=None)
precision_logistics = precision_score(val_y, y_pred, average='binary')# 精确率指模型预测为正的样本中实际也为正的样本占被预测为正的样本的比例。
importance=pd.DataFrame({"columns":list(val_X.columns), "coef":list(model_logistics.coef_.T)})
predictions_log=model_logistics.predict_proba(val_X)#每一类的概率
FPR_log, recall_log, thresholds = roc_curve(val_y, predictions_log[:,1],pos_label=1)
area_log=auc(FPR_log,recall_log)print('logistics模型结果:\n')
print(pd.DataFrame(columns=['预测值=1','预测值=0'],index=['真实值=1','真实值=0'],data=confusion_matrix_logistics))#混淆矩阵
print("f1值:"+str(f1_score_logistics))
print("准确率和召回率为:"+str(scores_logistics))
print('模型系数:\n'+str(importance))

在这里插入图片描述

#SVM模型建立
min_max_scaler = preprocessing.MinMaxScaler()#注意要归一化
X_train_minmax = min_max_scaler.fit_transform(train_X)
X_test_minmax=min_max_scaler.transform(val_X)
model_svm=SVC(probability=True)
model_svm.fit(X_train_minmax,train_y)
y_pred = model_svm.predict(X_test_minmax)
scores_svm=[]
scores_svm.append(precision_score(val_y, y_pred))
scores_svm.append(recall_score(val_y, y_pred))
confusion_matrix_svm=confusion_matrix(val_y,y_pred)
f1_score_svm=f1_score(val_y, y_pred,labels=None, pos_label=1, average='binary', sample_weight=None)
predictions_svm=model_svm.predict_proba(X_test_minmax)#每一类的概率
FPR_svm, recall_svm, thresholds = roc_curve(val_y,predictions_svm[:,1], pos_label=1)
area_svm = auc(FPR_svm,recall_svm)print('svm模型结果:\n')
print(pd.DataFrame(columns=['预测值=1','预测值=0'],index=['真实值=1','真实值=0'],data=confusion_matrix_svm))#混淆矩阵
print("f1值:"+str(f1_score_svm))
print("准确率和召回率为:"+str(scores_svm))

在这里插入图片描述

#xgboost模型建立
model_XGB = XGBClassifier()
eval_set = [(val_X, val_y)]
model_XGB.fit(train_X, train_y, early_stopping_rounds=500, eval_metric="logloss", eval_set=eval_set, verbose=False)
# verbose改为True就能可视化loss
y_pred = model_XGB.predict(val_X)scores_XGB=[]
scores_XGB.append(precision_score(val_y, y_pred))
scores_XGB.append(recall_score(val_y, y_pred))
confusion_matrix_XGB=confusion_matrix(val_y,y_pred)
f1_score_XGB=f1_score(val_y, y_pred,labels=None, pos_label=0, average="binary", sample_weight=None)predictions_xgb=model_XGB.predict_proba(val_X)#每一类的概率
FPR_xgb, recall_xgb, thresholds = roc_curve(val_y,predictions_xgb[:,1], pos_label=1)
area_xgb = auc(FPR_xgb,recall_xgb)print('xgboost模型结果:\n')
print(pd.DataFrame(columns=['预测值=1','预测值=0'],index=['真实值=1','真实值=0'],data=confusion_matrix_XGB))#混淆矩阵
print("f1值:"+str(f1_score_XGB))
print("精确度和召回率:"+str(scores_XGB))

在这里插入图片描述

#ROC图的绘制
plt.figure(figsize=(10,8))
plt.plot(FPR_xgb, recall_xgb, 'b', label='XGBoost_AUC = %0.3f' % area_xgb)
plt.plot(FPR_svm, recall_svm,label='SVM_AUC = %0.3f' % area_svm)
plt.plot(FPR_log, recall_log,label='Logistic_AUC = %0.3f' % area_log)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall')
plt.xlabel('FPR')
plt.title('ROC_before_GridSearchCV')
plt.show()

在这里插入图片描述

5.3 模型参数调优

Logistic模型调优:

C:C为正则化系数λ的倒数,必须为正数,默认为1。和SVM中的C一样,值越小,代表正则化越强。

SVM模型调优:

C:惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差

gamma:
选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

XGBoost参数调优:

XGBoost的参数较多,这里对三个参数进行了调整,共分为两步调整。整体思路是先调整较为重要的一组参数,然后将调到最优的参数输入模型后继续调下一组参数。

parameters_Logr = {'C':[0.05,0.1,0.5,1]}
parameters_svm = {'C':[0.05,0.1,1,5,10,20,50,100],'gamma':[0.01,0.05,0.1,0.2,0.3]}# 网格搜索
grid_search_log = GridSearchCV(model_logistics,parameters_Logr, cv=5,scoring='roc_auc')
grid_search_log.fit(train_X, train_y)grid_search_svm = GridSearchCV(model_svm,parameters_svm, cv=5,scoring='roc_auc')
grid_search_svm.fit(X_train_minmax, train_y)# 获得参数的最优值
print('Log:\n')
print(grid_search_log.best_params_,grid_search_log.best_score_)
print('\nSVM:\n')
print(grid_search_svm.best_params_,grid_search_svm.best_score_)

在这里插入图片描述

#XGBoost调参
#第一步:先调max_depth、min_child_weight
param_test1 = {'max_depth':range(3,10,2),'min_child_weight':range(1,6,2)
}
gsearch1 = GridSearchCV(estimator = XGBClassifier(), param_grid = param_test1,scoring='roc_auc')
gsearch1.fit(train_X,train_y,early_stopping_rounds=500, eval_metric="logloss", eval_set=eval_set, verbose=False)
gsearch1.best_params_,gsearch1.best_score_

在这里插入图片描述

#第二步:调gamma
param_test2 = {'gamma':[0.01,0.05,0.1,0.2,0.3,0.5,1]
}
gsearch2 = GridSearchCV(estimator = XGBClassifier(max_depth=3,min_child_weight=3), param_grid = param_test2, scoring='roc_auc', cv=5)
gsearch2.fit(train_X,train_y,early_stopping_rounds=500, eval_metric="logloss", eval_set=eval_set, verbose=False)
gsearch2.best_params_, gsearch2.best_score_

在这里插入图片描述

5.4 将调参过后的模型重新进行训练并与原模型比较

model_logistics_after = LogisticRegression(C=0.5)
model_logistics_after.fit(train_X,train_y)
y_pred_after = model_logistics_after.predict(val_X)
scores_logistics_after=[]
scores_logistics_after.append(precision_score(val_y, y_pred_after))
scores_logistics_after.append(recall_score(val_y, y_pred_after))
confusion_matrix_logistics_after=confusion_matrix(val_y,y_pred_after)
f1_score_logistics_after=f1_score(val_y, y_pred_after,labels=None, pos_label=1, average='binary', sample_weight=None)
precision_logistics_after = precision_score(val_y, y_pred_after, average='binary')# 精确率指模型预测为正的样本中实际也为正的样本占被预测为正的样本的比例。
importance_after=pd.DataFrame({"columns":list(val_X.columns), "coef":list(model_logistics_after.coef_.T)})
predictions_log_after=model_logistics_after.predict_proba(val_X)#每一类的概率
FPR_log_after, recall_log_after, thresholds_after = roc_curve(val_y, predictions_log_after[:,1],pos_label=1)
area_log_after=auc(FPR_log_after,recall_log_after)print('调参后logistics模型结果:\n')
print(pd.DataFrame(columns=['预测值=1','预测值=0'],index=['真实值=1','真实值=0'],data=confusion_matrix_logistics_after))#混淆矩阵
print("f1值:"+str(f1_score_logistics_after))
print("准确率和召回率为:"+str(scores_logistics_after))
print('模型系数:\n'+str(importance_after))

在这里插入图片描述

model_svm_after=SVC(C=100,gamma=0.1,probability=True)
model_svm_after.fit(X_train_minmax,train_y)
y_pred_after = model_svm_after.predict(X_test_minmax)
scores_svm_after=[]
scores_svm_after.append(precision_score(val_y, y_pred_after))
scores_svm_after.append(recall_score(val_y, y_pred_after))
confusion_matrix_svm_after=confusion_matrix(val_y,y_pred_after)
f1_score_svm_after=f1_score(val_y, y_pred_after,labels=None, pos_label=1, average='binary', sample_weight=None)
predictions_svm_after=model_svm.predict_proba(X_test_minmax)#每一类的概率
FPR_svm_after, recall_svm_after, thresholds_after = roc_curve(val_y,predictions_svm_after[:,1], pos_label=1)
area_svm_after = auc(FPR_svm_after,recall_svm_after)print('调参后svm模型结果:\n')
print(pd.DataFrame(columns=['预测值=1','预测值=0'],index=['真实值=1','真实值=0'],data=confusion_matrix_svm_after))#混淆矩阵
print("f1值:"+str(f1_score_svm_after))
print("准确率和召回率为:"+str(scores_svm_after))

在这里插入图片描述

model_XGB_after = XGBClassifier(max_depth= 3, min_child_weight= 3,gamma=0.5)
eval_set = [(val_X, val_y)]
model_XGB_after.fit(train_X, train_y, early_stopping_rounds=500, eval_metric="logloss", eval_set=eval_set, verbose=False)
# verbose改为True就能可视化loss
y_pred_after = model_XGB_after.predict(val_X)scores_XGB_after=[]
scores_XGB_after.append(precision_score(val_y, y_pred_after))
scores_XGB_after.append(recall_score(val_y, y_pred_after))
confusion_matrix_XGB_after=confusion_matrix(val_y,y_pred_after)
f1_score_XGB_after=f1_score(val_y, y_pred_after,labels=None, pos_label=0, average="binary", sample_weight=None)predictions_xgb_after=model_XGB_after.predict_proba(val_X)#每一类的概率
FPR_xgb_after, recall_xgb_after, thresholds_after = roc_curve(val_y,predictions_xgb_after[:,1], pos_label=1)
area_xgb_after = auc(FPR_xgb_after,recall_xgb_after)print('调参后xgboost模型结果:\n')
print(pd.DataFrame(columns=['预测值=1','预测值=0'],index=['真实值=1','真实值=0'],data=confusion_matrix_XGB_after))#混淆矩阵
print("f1值:"+str(f1_score_XGB_after))
print("精确度和召回率:"+str(scores_XGB_after))

在这里插入图片描述

plt.figure(figsize=(10,8))
plt.plot(FPR_xgb_after, recall_xgb_after, 'b', label='XGBoost_AUC = %0.3f' % area_xgb_after)
plt.plot(FPR_svm_after, recall_svm_after,label='SVM_AUC = %0.3f' % area_svm_after)
plt.plot(FPR_log_after, recall_log_after,label='Logistic_AUC = %0.3f' % area_log_after)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall')
plt.xlabel('FPR')
plt.title('ROC_after_GridSearchCV')
plt.show()

在这里插入图片描述
如下表是原模型和调参后的模型的比较(不同随机数种子可能结果有所出入):
在这里插入图片描述
从对比结果可以看出,调参后的模型性能总体略优于调参前的模型。

6 总结

本项目以体检数据集为样本进行了机器学习的预测,但是需要注意几个问题:

体检数据量太少,仅有1006条可分析数据,这对于糖尿病预测来说是远远不足的,所分析的结果代表性不强。
这里的数据糖尿病和正常人基本相当,而真实的数据具有很强的不平衡性。也就是说,糖尿病患者要远少于正常人,这种不平衡的数据集给真实情况下糖尿病的预测带来了很大困难,当然可以通过上采样、下采样或者其他方法进行不平衡数据集的预测。
缺少时序数据使得预测变得不准确,时序数据更能够体现一个人的身体状态。

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264118.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSRF靶场实战

DVWA靶场链接&#xff1a;https://pan.baidu.com/s/1eUlPyB-gjiZwI0wsNW_Vkw?pwd0b52 提取码&#xff1a;0b52 DVWA Low 级别打开靶场&#xff0c;修改密码 复制上面的 url&#xff0c;写个简单的 html 文件 <html <body> <a hrefhttp://127.0.0.1/DVWA/vulne…

HTML+CSS+JS:轮播组件

效果演示 一个具有动画效果的卡片元素和一个注册表单&#xff0c;背景为渐变色&#xff0c;整体布局简洁美观。 Code <div class"card" style"--d:-1;"><div class"content"><div class"img"><img src"./i…

第三节:Vben Admin登录对接后端login接口

系列文章目录 第一节&#xff1a;Vben Admin介绍和初次运行 第二节&#xff1a;Vben Admin 登录逻辑梳理和对接后端准备 文章目录 系列文章目录前言一、Flask项目介绍二、使用步骤1.User模型创建2.迁移模型3. Token创建4. 编写蓝图5. 注册蓝图 三. 测试登录总结 前言 上一节&…

Jenkins中权限管理说明(9)

Jenkins版本&#xff1a;2.303.1 默认情况下&#xff0c;Jenkins是不允许注册操作&#xff0c;只有安装时候赋予的管理员账户。 Jenkins Role Authorization 插件 可以通过通配符方式给用户分配角色&#xff0c;即特定的用户只能看到特定前缀的 View 和 Job&#xff0c;所以一…

新的一年,如何优化企业库存管理?

随着社会的发展和经济的不断增长&#xff0c;库存管理成为了企业运营中非常重要的一环。库存作为企业的资产之一&#xff0c;直接影响着企业的盈利能力和竞争优势。因此&#xff0c;对企业库存进行科学的分析和管理&#xff0c;成为了确保企业持续稳定发展的必要手段之一。企业…

新茶饮“卖水人”混战:徳馨、恒鑫,谁能“卷”出新故事?

春节临近&#xff0c;新茶饮品牌将迎来一年中最大的销售旺季。 而作为新茶饮背后的供应商德馨食品于2023年9月30日终止IPO&#xff1b;原料果汁速冻果块制造商田野创新股份有限公司&#xff08;下称“田野股份”&#xff0c;832023.BJ&#xff09;于2023年2月2日在北交所上市&…

WampServer环境下载安装并结合内网穿透实现远程访问管理界面

文章目录 前言1.WampServer下载安装2.WampServer启动3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 Wamp 是一个 Windows系统下的 Apache PHP Mysql 集成安装环境&#xff0c;是一组常用来…

2024 Sora来了!“手机Agent智能体”也来了!

近日&#xff0c;Open AI发布了能够根据文本生成超现实视频的工具Sora&#xff0c;多款震撼视频引爆科技圈刷屏&#xff0c;热度持续发酵占据AI领域话题中心&#xff0c;被认为是AGI实现过程里的重大里程碑事件。新一轮的人工智能浪潮给人类未来的生产和生活方式带来巨大而深远…

数字滚动实现

介绍 vue-countup-v3 插件是一个基于 Vue3 的数字动画插件&#xff0c;用于在网站或应用程序中创建带有数字动画效果的计数器。通过该插件&#xff0c;我们可以轻松地实现数字的递增或递减动画&#xff0c;并自定义其样式和动画效果。该插件可以用于许多场景&#xff0c;例如展…

K8S—集群调度

目录 前言 一 List-Watch 1.1 list-watch概述 1.2 list-watch工作机制 二 集群调度 2.1 调度过程 2.2 Predicate 和 Priorities 的常见算法和优先级选项 2.3 调度方式 三 亲和性 3.1 节点亲和性 3.2 Pod 亲和性 3.3 键值运算关系 3.4 Pod亲和性与反亲和性 3.5 示例…

基于ZYNQ的PCIE高速数据采集卡的设计(三)硬件设计

采集卡硬件设计 3.1 引言 采集卡的硬件设计是实现采集功能的基础&#xff0c;良好的硬件设计可以使采集功能更容 易实现&#xff0c;方便软件开发。本章基于第二章的硬件设计方案来详细介绍采集卡硬件设计。 包括载卡和子卡的芯片的选型、配置和具体电路的设计。载卡和子卡…

VIC模型参数率定和优化、未来气候变化模型预测

目录 专题一 VIC模型的原理及特点 综合案例一 基于QGIS的VIC模型建模 专题二 VIC模型率定验证 综合案例二 基于R语言VIC参数率定和优化 专题三 遥感技术与未来气候变化 综合案例三 运用VIC模型评估未来气候对水文情势的影响 更多应用 VIC模型是一个大尺度的半分布式水文…

【Linux运维系列】vim操作

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

基于Pytorch的猫狗图片分类【深度学习CNN】

猫狗分类来源于Kaggle上的一个入门竞赛——Dogs vs Cats。为了加深对CNN的理解&#xff0c;基于Pytorch复现了LeNet,AlexNet,ResNet等经典CNN模型&#xff0c;源代码放在GitHub上&#xff0c;地址传送点击此处。项目大纲如下&#xff1a; 文章目录 一、问题描述二、数据集处理…

高等数学(无穷小与无穷大)

目录 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、无穷小量的阶的比较 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、无穷小量的阶的比较

Elastic Search:构建语义搜索体验

当你逐步熟悉 Elastic 时&#xff0c;你将使用 Elasticsearch Relevance Engine™ (ESRE)&#xff0c;该引擎旨在为 AI 搜索应用程序提供支持。 借助 ESRE&#xff0c;你可以利用一套开发人员工具&#xff0c;包括 Elastic 的文本搜索、向量数据库和我们用于语义搜索的专有转换…

Unity中URP实现水体(水下的扭曲)

文章目录 前言一、使用一张法线纹理&#xff0c;作为水下扭曲的纹理1、在属性面板定义一个纹理&#xff0c;用于传入法线贴图2、在Pass中&#xff0c;定义对应的纹理和采样器3、在常量缓冲区&#xff0c;申明修改 Tilling 和 Offset 的ST4、在顶点着色器&#xff0c;计算得到 应…

NLP 使用Word2vec实现文本分类

&#x1f368; 本文为[&#x1f517;365天深度学习训练营学习记录博客 &#x1f366; 参考文章&#xff1a;365天深度学习训练营 &#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制]\n&#x1f680; 文章来源&#xff1a;[K同学的学习圈子](https://www.yuque.com/…

PyPDF2:项目实战源码分享(PDF裁剪)

目录&#x1f4d1; 1. 背景&#x1f4d1;2. 源码模块解析&#x1f4d1;2.1 读取PDF页数2.2 获取指定页的宽高尺寸2.3 裁剪单页PDF2.4 批量裁剪PDF 总结&#x1f4d1; 1. 背景&#x1f4d1; 接PyPDF2模块推荐博文中提到的实际需求&#xff08;将银行网站下载来的多页且单页多张…

Android LinearLayout 如何让子元素靠下居中对齐 center bottom

Android LinearLayout 如何让子元素靠下居中对齐 center bottom 首先你需要知道两个知识点&#xff1a; android:layout_gravity 指定的是当前元素在父元素中的位置android:gravity 指定的是当前元素子元素的排布位置 比如&#xff1a; 有这么一个布局&#xff0c;我需要让…