文章目录
- 概要
- SteramGraph 核心对象
- SteramGraph 生成过程
概要
在 Flink 中,StreamGraph 是数据流的逻辑表示,它描述了如何在 Flink 作业中执行数据流转换。StreamGraph 是 Flink 运行时生成执行计划的基础。
使用DataStream API开发的应用程序,首先被转换为 Transformation,再被映射为StreamGraph,在客户端进行StreamGraph、JobGraph的转换,提交JobGraph到Flink集群后,Flink集群负责将JobGraph转换为ExecutionGraph,之后进入调度执行阶段。
SteramGraph 核心对象
- StreamNode
StreamNode 是 StremGraph 中的节点 ,从 Transformation 转换而来,可以简单理解为一个 StreamNode 表示一个算子,从逻辑上来说,SteramNode 在 StreamGraph 中存在实体和虚拟的 StreamNode。StremNode 可以有多个输入,也可以有多个输出。
实体的 StreamNode 会最终变成物理算子。虚拟的 StreamNode 会附着在 StreamEdge 上。 - StreamEdge
StreamEdge 是 StreamGraph 中的边,用来连接两个 StreamNode,一个 StreamNode 可以有多个出边、入边,StreamEdge 中包含了旁路输出、分区器、字段筛选输出等信息。
SteramGraph 生成过程
StreamGraph 在 FlinkClient 中生成,由 FlinkClient 在提交的时候触发 Flink 应用的 main 方法,用户编写的业务逻辑组装成 Transformation 流水线,在最后调用 StreamExecutionEnvironment.execute() 的时候开始触发 StreamGraph 构建。
StreamGraph在Flink的作业提交前生成,生成StreamGraph的入口在StreamExecutionEnvironment中
@Internalpublic StreamGraph getStreamGraph() {return this.getStreamGraph(this.getJobName());}@Internalpublic StreamGraph getStreamGraph(String jobName) {return this.getStreamGraph(jobName, true);}@Internalpublic StreamGraph getStreamGraph(String jobName, boolean clearTransformations) {StreamGraph streamGraph = this.getStreamGraphGenerator().setJobName(jobName).generate();if (clearTransformations) {this.transformations.clear();}return streamGraph;}private StreamGraphGenerator getStreamGraphGenerator() {if (this.transformations.size() <= 0) {throw new IllegalStateException("No operators defined in streaming topology. Cannot execute.");} else {RuntimeExecutionMode executionMode = (RuntimeExecutionMode)this.configuration.get(ExecutionOptions.RUNTIME_MODE);return (new StreamGraphGenerator(this.transformations, this.config, this.checkpointCfg, this.getConfiguration())).setRuntimeExecutionMode(executionMode).setStateBackend(this.defaultStateBackend).setChaining(this.isChainingEnabled).setUserArtifacts(this.cacheFile).setTimeCharacteristic(this.timeCharacteristic).setDefaultBufferTimeout(this.bufferTimeout);}}
StreamGraph实际上是在StreamGraphGenerator中生成的,从SinkTransformation(输出向前追溯到SourceTransformation)。在遍历过程中一边遍历一遍构建StreamGraph,如代码清单所示
//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by FernFlower decompiler)
//package org.apache.flink.streaming.api.graph;import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import javax.annotation.Nullable;
import org.apache.flink.annotation.Internal;
import org.apache.flink.api.common.ExecutionConfig;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.cache.DistributedCache.DistributedCacheEntry;
import org.apache.flink.api.common.typeutils.TypeSerializer;
import org.apache.flink.api.connector.source.Boundedness;
import org.apache.flink.api.dag.Transformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.ExecutionOptions;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.runtime.jobgraph.SavepointRestoreSettings;
import org.apache.flink.runtime.jobgraph.ScheduleMode;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.graph.TransformationTranslator.Context;
import org.apache.flink.streaming.api.operators.sorted.state.BatchExecutionInternalTimeServiceManager;
import org.apache.flink.streaming.api.operators.sorted.state.BatchExecutionStateBackend;
import org.apache.flink.streaming.api.transformations.BroadcastStateTransformation;
import org.apache.flink.streaming.api.transformations.CoFeedbackTransformation;
import org.apache.flink.streaming.api.transformations.FeedbackTransformation;
import org.apache.flink.streaming.api.transformations.KeyedBroadcastStateTransformation;
import org.apache.flink.streaming.api.transformations.KeyedMultipleInputTransformation;
import org.apache.flink.streaming.api.transformations.LegacySinkTransformation;
import org.apache.flink.streaming.api.transformations.LegacySourceTransformation;
import org.apache.flink.streaming.api.transformations.MultipleInputTransformation;
import org.apache.flink.streaming.api.transformations.OneInputTransformation;
import org.apache.flink.streaming.api.transformations.PartitionTransformation;
import org.apache.flink.streaming.api.transformations.PhysicalTransformation;
import org.apache.flink.streaming.api.transformations.ReduceTransformation;
import org.apache.flink.streaming.api.transformations.SideOutputTransformation;
import org.apache.flink.streaming.api.transformations.SinkTransformation;
import org.apache.flink.streaming.api.transformations.SourceTransformation;
import org.apache.flink.streaming.api.transformations.TimestampsAndWatermarksTransformation;
import org.apache.flink.streaming.api.transformations.TwoInputTransformation;
import org.apache.flink.streaming.api.transformations.UnionTransformation;
import org.apache.flink.streaming.api.transformations.WithBoundedness;
import org.apache.flink.streaming.runtime.translators.BroadcastStateTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.KeyedBroadcastStateTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.LegacySinkTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.LegacySourceTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.MultiInputTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.OneInputTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.PartitionTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.ReduceTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.SideOutputTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.SinkTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.SourceTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.TimestampsAndWatermarksTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.TwoInputTransformationTranslator;
import org.apache.flink.streaming.runtime.translators.UnionTransformationTranslator;
import org.apache.flink.util.Preconditions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;@Internal
public class StreamGraphGenerator {private static final Logger LOG = LoggerFactory.getLogger(StreamGraphGenerator.class);public static final int DEFAULT_LOWER_BOUND_MAX_PARALLELISM = 128;public static final TimeCharacteristic DEFAULT_TIME_CHARACTERISTIC;public static final String DEFAULT_JOB_NAME = "Flink Streaming Job";public static final String DEFAULT_SLOT_SHARING_GROUP = "default";private final List<Transformation<?>> transformations;private final ExecutionConfig executionConfig;private final CheckpointConfig checkpointConfig;private final ReadableConfig configuration;private StateBackend stateBackend;private boolean chaining;private Collection<Tuple2<String, DistributedCacheEntry>> userArtifacts;private TimeCharacteristic timeCharacteristic;private String jobName;private SavepointRestoreSettings savepointRestoreSettings;private long defaultBufferTimeout;private RuntimeExecutionMode runtimeExecutionMode;private boolean shouldExecuteInBatchMode;private static final Map<Class<? extends Transformation>, TransformationTranslator<?, ? extends Transformation>> translatorMap;protected static Integer iterationIdCounter;private StreamGraph streamGraph;private Map<Transformation<?>, Collection<Integer>> alreadyTransformed;public static int getNewIterationNodeId() {Integer var0 = iterationIdCounter;iterationIdCounter = iterationIdCounter - 1;return iterationIdCounter;}public StreamGraphGenerator(List<Transformation<?>> transformations, ExecutionConfig executionConfig, CheckpointConfig checkpointConfig) {this(transformations, executionConfig, checkpointConfig, new Configuration());}public StreamGraphGenerator(List<Transformation<?>> transformations, ExecutionConfig executionConfig, CheckpointConfig checkpointConfig, ReadableConfig configuration) {this.chaining = true;this.timeCharacteristic = DEFAULT_TIME_CHARACTERISTIC;this.jobName = "Flink Streaming Job";this.savepointRestoreSettings = SavepointRestoreSettings.none();this.defaultBufferTimeout = -1L;this.runtimeExecutionMode = RuntimeExecutionMode.STREAMING;this.transformations = (List)Preconditions.checkNotNull(transformations);this.executionConfig = (ExecutionConfig)Preconditions.checkNotNull(executionConfig);this.checkpointConfig = new CheckpointConfig(checkpointConfig);this.configuration = (ReadableConfig)Preconditions.checkNotNull(configuration);}public StreamGraphGenerator setRuntimeExecutionMode(RuntimeExecutionMode runtimeExecutionMode) {this.runtimeExecutionMode = (RuntimeExecutionMode)Preconditions.checkNotNull(runtimeExecutionMode);return this;}public StreamGraphGenerator setStateBackend(StateBackend stateBackend) {this.stateBackend = stateBackend;return this;}public StreamGraphGenerator setChaining(boolean chaining) {this.chaining = chaining;return this;}public StreamGraphGenerator setUserArtifacts(Collection<Tuple2<String, DistributedCacheEntry>> userArtifacts) {this.userArtifacts = userArtifacts;return this;}public StreamGraphGenerator setTimeCharacteristic(TimeCharacteristic timeCharacteristic) {this.timeCharacteristic = timeCharacteristic;return this;}public StreamGraphGenerator setDefaultBufferTimeout(long defaultBufferTimeout) {this.defaultBufferTimeout = defaultBufferTimeout;return this;}public StreamGraphGenerator setJobName(String jobName) {this.jobName = jobName;return this;}public void setSavepointRestoreSettings(SavepointRestoreSettings savepointRestoreSettings) {this.savepointRestoreSettings = savepointRestoreSettings;}public StreamGraph generate() {this.streamGraph = new StreamGraph(this.executionConfig, this.checkpointConfig, this.savepointRestoreSettings);this.shouldExecuteInBatchMode = this.shouldExecuteInBatchMode(this.runtimeExecutionMode);this.configureStreamGraph(this.streamGraph);this.alreadyTransformed = new HashMap();Iterator var1 = this.transformations.iterator();while(var1.hasNext()) {Transformation<?> transformation = (Transformation)var1.next();this.transform(transformation);}StreamGraph builtStreamGraph = this.streamGraph;this.alreadyTransformed.clear();this.alreadyTransformed = null;this.streamGraph = null;return builtStreamGraph;}private void configureStreamGraph(StreamGraph graph) {Preconditions.checkNotNull(graph);graph.setChaining(this.chaining);graph.setUserArtifacts(this.userArtifacts);graph.setTimeCharacteristic(this.timeCharacteristic);graph.setJobName(this.jobName);if (this.shouldExecuteInBatchMode) {if (this.checkpointConfig.isCheckpointingEnabled()) {LOG.info("Disabled Checkpointing. Checkpointing is not supported and not needed when executing jobs in BATCH mode.");this.checkpointConfig.disableCheckpointing();}graph.setGlobalDataExchangeMode(GlobalDataExchangeMode.FORWARD_EDGES_PIPELINED);graph.setScheduleMode(ScheduleMode.LAZY_FROM_SOURCES_WITH_BATCH_SLOT_REQUEST);this.setDefaultBufferTimeout(-1L);this.setBatchStateBackendAndTimerService(graph);} else {graph.setStateBackend(this.stateBackend);graph.setScheduleMode(ScheduleMode.EAGER);if (this.checkpointConfig.isApproximateLocalRecoveryEnabled()) {this.checkApproximateLocalRecoveryCompatibility();graph.setGlobalDataExchangeMode(GlobalDataExchangeMode.ALL_EDGES_PIPELINED_APPROXIMATE);} else {graph.setGlobalDataExchangeMode(GlobalDataExchangeMode.ALL_EDGES_PIPELINED);}}}private void checkApproximateLocalRecoveryCompatibility() {Preconditions.checkState(!this.checkpointConfig.isUnalignedCheckpointsEnabled(), "Approximate Local Recovery and Unaligned Checkpoint can not be used together yet");}private void setBatchStateBackendAndTimerService(StreamGraph graph) {boolean useStateBackend = (Boolean)this.configuration.get(ExecutionOptions.USE_BATCH_STATE_BACKEND);boolean sortInputs = (Boolean)this.configuration.get(ExecutionOptions.SORT_INPUTS);Preconditions.checkState(!useStateBackend || sortInputs, "Batch state backend requires the sorted inputs to be enabled!");if (useStateBackend) {LOG.debug("Using BATCH execution state backend and timer service.");graph.setStateBackend(new BatchExecutionStateBackend());graph.setTimerServiceProvider(BatchExecutionInternalTimeServiceManager::create);} else {graph.setStateBackend(this.stateBackend);}}private boolean shouldExecuteInBatchMode(RuntimeExecutionMode configuredMode) {boolean existsUnboundedSource = this.existsUnboundedSource();Preconditions.checkState(configuredMode != RuntimeExecutionMode.BATCH || !existsUnboundedSource, "Detected an UNBOUNDED source with the '" + ExecutionOptions.RUNTIME_MODE.key() + "' set to 'BATCH'. This combination is not allowed, please set the '" + ExecutionOptions.RUNTIME_MODE.key() + "' to STREAMING or AUTOMATIC");if (Preconditions.checkNotNull(configuredMode) != RuntimeExecutionMode.AUTOMATIC) {return configuredMode == RuntimeExecutionMode.BATCH;} else {return !existsUnboundedSource;}}private boolean existsUnboundedSource() {return this.transformations.stream().anyMatch((transformation) -> {return this.isUnboundedSource(transformation) || transformation.getTransitivePredecessors().stream().anyMatch(this::isUnboundedSource);});}private boolean isUnboundedSource(Transformation<?> transformation) {Preconditions.checkNotNull(transformation);return transformation instanceof WithBoundedness && ((WithBoundedness)transformation).getBoundedness() != Boundedness.BOUNDED;}private Collection<Integer> transform(Transformation<?> transform) {if (this.alreadyTransformed.containsKey(transform)) {return (Collection)this.alreadyTransformed.get(transform);} else {LOG.debug("Transforming " + transform);if (transform.getMaxParallelism() <= 0) {int globalMaxParallelismFromConfig = this.executionConfig.getMaxParallelism();if (globalMaxParallelismFromConfig > 0) {transform.setMaxParallelism(globalMaxParallelismFromConfig);}}transform.getOutputType();TransformationTranslator<?, Transformation<?>> translator = (TransformationTranslator)translatorMap.get(transform.getClass());Collection transformedIds;if (translator != null) {transformedIds = this.translate(translator, transform);} else {transformedIds = this.legacyTransform(transform);}if (!this.alreadyTransformed.containsKey(transform)) {this.alreadyTransformed.put(transform, transformedIds);}return transformedIds;}}private Collection<Integer> legacyTransform(Transformation<?> transform) {Collection transformedIds;if (transform instanceof FeedbackTransformation) {transformedIds = this.transformFeedback((FeedbackTransformation)transform);} else {if (!(transform instanceof CoFeedbackTransformation)) {throw new IllegalStateException("Unknown transformation: " + transform);}transformedIds = this.transformCoFeedback((CoFeedbackTransformation)transform);}if (transform.getBufferTimeout() >= 0L) {this.streamGraph.setBufferTimeout(transform.getId(), transform.getBufferTimeout());} else {this.streamGraph.setBufferTimeout(transform.getId(), this.defaultBufferTimeout);}if (transform.getUid() != null) {this.streamGraph.setTransformationUID(transform.getId(), transform.getUid());}if (transform.getUserProvidedNodeHash() != null) {this.streamGraph.setTransformationUserHash(transform.getId(), transform.getUserProvidedNodeHash());}if (!this.streamGraph.getExecutionConfig().hasAutoGeneratedUIDsEnabled() && transform instanceof PhysicalTransformation && transform.getUserProvidedNodeHash() == null && transform.getUid() == null) {throw new IllegalStateException("Auto generated UIDs have been disabled but no UID or hash has been assigned to operator " + transform.getName());} else {if (transform.getMinResources() != null && transform.getPreferredResources() != null) {this.streamGraph.setResources(transform.getId(), transform.getMinResources(), transform.getPreferredResources());}this.streamGraph.setManagedMemoryUseCaseWeights(transform.getId(), transform.getManagedMemoryOperatorScopeUseCaseWeights(), transform.getManagedMemorySlotScopeUseCases());return transformedIds;}}private <T> Collection<Integer> transformFeedback(FeedbackTransformation<T> iterate) {if (this.shouldExecuteInBatchMode) {throw new UnsupportedOperationException("Iterations are not supported in BATCH execution mode. If you want to execute such a pipeline, please set the '" + ExecutionOptions.RUNTIME_MODE.key() + "'=" + RuntimeExecutionMode.STREAMING.name());} else if (iterate.getFeedbackEdges().size() <= 0) {throw new IllegalStateException("Iteration " + iterate + " does not have any feedback edges.");} else {List<Transformation<?>> inputs = iterate.getInputs();Preconditions.checkState(inputs.size() == 1);Transformation<?> input = (Transformation)inputs.get(0);List<Integer> resultIds = new ArrayList();Collection<Integer> inputIds = this.transform(input);resultIds.addAll(inputIds);if (this.alreadyTransformed.containsKey(iterate)) {return (Collection)this.alreadyTransformed.get(iterate);} else {Tuple2<StreamNode, StreamNode> itSourceAndSink = this.streamGraph.createIterationSourceAndSink(iterate.getId(), getNewIterationNodeId(), getNewIterationNodeId(), iterate.getWaitTime(), iterate.getParallelism(), iterate.getMaxParallelism(), iterate.getMinResources(), iterate.getPreferredResources());StreamNode itSource = (StreamNode)itSourceAndSink.f0;StreamNode itSink = (StreamNode)itSourceAndSink.f1;this.streamGraph.setSerializers(itSource.getId(), (TypeSerializer)null, (TypeSerializer)null, iterate.getOutputType().createSerializer(this.executionConfig));this.streamGraph.setSerializers(itSink.getId(), iterate.getOutputType().createSerializer(this.executionConfig), (TypeSerializer)null, (TypeSerializer)null);resultIds.add(itSource.getId());this.alreadyTransformed.put(iterate, resultIds);List<Integer> allFeedbackIds = new ArrayList();Iterator var10 = iterate.getFeedbackEdges().iterator();while(var10.hasNext()) {Transformation<T> feedbackEdge = (Transformation)var10.next();Collection<Integer> feedbackIds = this.transform(feedbackEdge);allFeedbackIds.addAll(feedbackIds);Iterator var13 = feedbackIds.iterator();while(var13.hasNext()) {Integer feedbackId = (Integer)var13.next();this.streamGraph.addEdge(feedbackId, itSink.getId(), 0);}}String slotSharingGroup = this.determineSlotSharingGroup((String)null, allFeedbackIds);if (slotSharingGroup == null) {slotSharingGroup = "SlotSharingGroup-" + iterate.getId();}itSink.setSlotSharingGroup(slotSharingGroup);itSource.setSlotSharingGroup(slotSharingGroup);return resultIds;}}}private <F> Collection<Integer> transformCoFeedback(CoFeedbackTransformation<F> coIterate) {if (this.shouldExecuteInBatchMode) {throw new UnsupportedOperationException("Iterations are not supported in BATCH execution mode. If you want to execute such a pipeline, please set the '" + ExecutionOptions.RUNTIME_MODE.key() + "'=" + RuntimeExecutionMode.STREAMING.name());} else {Tuple2<StreamNode, StreamNode> itSourceAndSink = this.streamGraph.createIterationSourceAndSink(coIterate.getId(), getNewIterationNodeId(), getNewIterationNodeId(), coIterate.getWaitTime(), coIterate.getParallelism(), coIterate.getMaxParallelism(), coIterate.getMinResources(), coIterate.getPreferredResources());StreamNode itSource = (StreamNode)itSourceAndSink.f0;StreamNode itSink = (StreamNode)itSourceAndSink.f1;this.streamGraph.setSerializers(itSource.getId(), (TypeSerializer)null, (TypeSerializer)null, coIterate.getOutputType().createSerializer(this.executionConfig));this.streamGraph.setSerializers(itSink.getId(), coIterate.getOutputType().createSerializer(this.executionConfig), (TypeSerializer)null, (TypeSerializer)null);Collection<Integer> resultIds = Collections.singleton(itSource.getId());this.alreadyTransformed.put(coIterate, resultIds);List<Integer> allFeedbackIds = new ArrayList();Iterator var7 = coIterate.getFeedbackEdges().iterator();while(var7.hasNext()) {Transformation<F> feedbackEdge = (Transformation)var7.next();Collection<Integer> feedbackIds = this.transform(feedbackEdge);allFeedbackIds.addAll(feedbackIds);Iterator var10 = feedbackIds.iterator();while(var10.hasNext()) {Integer feedbackId = (Integer)var10.next();this.streamGraph.addEdge(feedbackId, itSink.getId(), 0);}}String slotSharingGroup = this.determineSlotSharingGroup((String)null, allFeedbackIds);itSink.setSlotSharingGroup(slotSharingGroup);itSource.setSlotSharingGroup(slotSharingGroup);return Collections.singleton(itSource.getId());}}private Collection<Integer> translate(TransformationTranslator<?, Transformation<?>> translator, Transformation<?> transform) {Preconditions.checkNotNull(translator);Preconditions.checkNotNull(transform);List<Collection<Integer>> allInputIds = this.getParentInputIds(transform.getInputs());if (this.alreadyTransformed.containsKey(transform)) {return (Collection)this.alreadyTransformed.get(transform);} else {String slotSharingGroup = this.determineSlotSharingGroup(transform.getSlotSharingGroup(), (Collection)allInputIds.stream().flatMap(Collection::stream).collect(Collectors.toList()));Context context = new StreamGraphGenerator.ContextImpl(this, this.streamGraph, slotSharingGroup, this.configuration);return this.shouldExecuteInBatchMode ? translator.translateForBatch(transform, context) : translator.translateForStreaming(transform, context);}}private List<Collection<Integer>> getParentInputIds(@Nullable Collection<Transformation<?>> parentTransformations) {List<Collection<Integer>> allInputIds = new ArrayList();if (parentTransformations == null) {return allInputIds;} else {Iterator var3 = parentTransformations.iterator();while(var3.hasNext()) {Transformation<?> transformation = (Transformation)var3.next();allInputIds.add(this.transform(transformation));}return allInputIds;}}private String determineSlotSharingGroup(String specifiedGroup, Collection<Integer> inputIds) {if (specifiedGroup != null) {return specifiedGroup;} else {String inputGroup = null;Iterator var4 = inputIds.iterator();while(var4.hasNext()) {int id = (Integer)var4.next();String inputGroupCandidate = this.streamGraph.getSlotSharingGroup(id);if (inputGroup == null) {inputGroup = inputGroupCandidate;} else if (!inputGroup.equals(inputGroupCandidate)) {return "default";}}return inputGroup == null ? "default" : inputGroup;}}static {DEFAULT_TIME_CHARACTERISTIC = TimeCharacteristic.ProcessingTime;Map<Class<? extends Transformation>, TransformationTranslator<?, ? extends Transformation>> tmp = new HashMap();tmp.put(OneInputTransformation.class, new OneInputTransformationTranslator());tmp.put(TwoInputTransformation.class, new TwoInputTransformationTranslator());tmp.put(MultipleInputTransformation.class, new MultiInputTransformationTranslator());tmp.put(KeyedMultipleInputTransformation.class, new MultiInputTransformationTranslator());tmp.put(SourceTransformation.class, new SourceTransformationTranslator());tmp.put(SinkTransformation.class, new SinkTransformationTranslator());tmp.put(LegacySinkTransformation.class, new LegacySinkTransformationTranslator());tmp.put(LegacySourceTransformation.class, new LegacySourceTransformationTranslator());tmp.put(UnionTransformation.class, new UnionTransformationTranslator());tmp.put(PartitionTransformation.class, new PartitionTransformationTranslator());tmp.put(SideOutputTransformation.class, new SideOutputTransformationTranslator());tmp.put(ReduceTransformation.class, new ReduceTransformationTranslator());tmp.put(TimestampsAndWatermarksTransformation.class, new TimestampsAndWatermarksTransformationTranslator());tmp.put(BroadcastStateTransformation.class, new BroadcastStateTransformationTranslator());tmp.put(KeyedBroadcastStateTransformation.class, new KeyedBroadcastStateTransformationTranslator());translatorMap = Collections.unmodifiableMap(tmp);iterationIdCounter = 0;}private static class ContextImpl implements Context {private final StreamGraphGenerator streamGraphGenerator;private final StreamGraph streamGraph;private final String slotSharingGroup;private final ReadableConfig config;public ContextImpl(StreamGraphGenerator streamGraphGenerator, StreamGraph streamGraph, String slotSharingGroup, ReadableConfig config) {this.streamGraphGenerator = (StreamGraphGenerator)Preconditions.checkNotNull(streamGraphGenerator);this.streamGraph = (StreamGraph)Preconditions.checkNotNull(streamGraph);this.slotSharingGroup = (String)Preconditions.checkNotNull(slotSharingGroup);this.config = (ReadableConfig)Preconditions.checkNotNull(config);}public StreamGraph getStreamGraph() {return this.streamGraph;}public Collection<Integer> getStreamNodeIds(Transformation<?> transformation) {Preconditions.checkNotNull(transformation);Collection<Integer> ids = (Collection)this.streamGraphGenerator.alreadyTransformed.get(transformation);Preconditions.checkState(ids != null, "Parent transformation \"" + transformation + "\" has not been transformed.");return ids;}public String getSlotSharingGroup() {return this.slotSharingGroup;}public long getDefaultBufferTimeout() {return this.streamGraphGenerator.defaultBufferTimeout;}public ReadableConfig getGraphGeneratorConfig() {return this.config;}}
}