【代码】Python3|无GUI环境中使用Seaborn作图的学习路线及代码(阴影折线图)

我有个需求是需要画图,让GPT帮我生成了一下学习计划。
学习路线依照GPT的来的,使用的Prompt工具是https://github.com/JushBJJ/Mr.-Ranedeer-AI-Tutor。

文章目录

  • Prerequisite
  • Main Curriculum
    • 1.1 Seaborn介绍
      • Seaborn基础
      • 保存图形为文件
      • 练习
    • 1.2 单变量数据可视化
      • 直方图
      • 折线图(Line Plots)
      • 散点图(Scatter Plots)
      • 练习
    • 1.3 多变量数据可视化
      • 使用Seaborn创建散点图
      • 练习
    • 1.4 阴影折线图

Prerequisite

由于您已经拥有足够的Python基础和数学知识,我们将直接进入Seaborn的学习计划:
我已经根据您的需求调整了学习计划,考虑到您在没有图形用户界面的服务器上学习。🦌


在开始之前,我们将关注在非图形界面环境下的准备:
0.1 数据可视化的重要性:探讨数据可视化的意义及其在数据科学中的作用,特别是在非图形界面环境下的应用。
0.2 Python数据可视化库概览:介绍Python中常用的数据可视化库,并特别强调在没有图形界面时如何利用这些库。
0.3 Seaborn库的安装和设置:指导如何在不同环境中安装Seaborn库及其依赖,特别是在没有图形界面的服务器上。

Main Curriculum

现在,我们将专注于在无GUI环境中使用Seaborn:
1.1 Seaborn介绍:介绍Seaborn库及其在非图形界面环境下的应用。
1.2 Seaborn的基础:学习如何使用Seaborn进行数据集加载和可视化基础,并将结果保存为文件。
1.3 单变量数据可视化:使用Seaborn绘制单变量分布的图表,并学习如何将这些图表保存为文件。
1.4 多变量数据可视化:探索使用Seaborn展示多变量关系的图表,并将这些图表保存为文件。
1.5 使用Seaborn进行分类数据可视化:了解如何使用Seaborn绘制分类数据图表,并将图表保存为文件。
1.6 Seaborn中的图表美化和风格设置:学习如何自定义Seaborn图表的外观,并将这些自定义的图表保存为文件。
1.7 Seaborn中的高级绘图:探讨Seaborn中的高级绘图类型和技术,并学习如何将这些图表保存为文件。
1.8 使用Seaborn处理大规模数据:介绍如何使用Seaborn有效处理和可视化大型数据集,并将结果保存为文件。
1.9 实战项目:完成一个涉及数据清理、分析和使用Seaborn进行可视化的实战项目,并将所有图表保存为文件。
1.10 Seaborn社区和资源:介绍如何获取更多Seaborn资源和如何参与Seaborn社区,特别是在处理非GUI环境中的可视化。

1.1 Seaborn介绍

现在我们将开始专门为服务器环境(无图形用户界面)定制的Seaborn学习计划。🦌


主题: 在服务器环境下使用Seaborn


由于您在没有图形界面的服务器上工作,我们将侧重于如何将Seaborn的可视化结果保存为文件,以便您可以查看这些图像而无需图形界面。

Seaborn基础

首先,我们将确保Seaborn库已正确安装在您的服务器上。请在服务器的命令行中执行以下命令来安装Seaborn(如果尚未安装):

pip install seaborn

保存图形为文件

在服务器环境下使用Seaborn时,您可以将图形直接保存到文件中,而不是在屏幕上显示。这可以通过使用Matplotlib的savefig方法来实现。以下是一个示例,展示如何创建一个简单的Seaborn图形并将其保存为PNG文件:

import seaborn as sns
import matplotlib.pyplot as plt# 创建数据
tips = sns.load_dataset("tips")# 创建一个图形
sns.set(style="whitegrid")
ax = sns.boxplot(x=tips["total_bill"])# 将图形保存到文件
plt.savefig('boxplot.png')

在这个例子中,我们首先导入Seaborn和Matplotlib,然后加载一个示例数据集。我们使用Seaborn创建了一个箱形图,然后使用Matplotlib的savefig方法将图形保存为名为boxplot.png的文件。

注:初次使用会有点慢。
在这里插入图片描述

练习

请尝试自己创建一个Seaborn图形,并将其保存为文件。您可以选择不同的数据集和图形类型,如散点图、直方图或线图。


接下来,我们将学习如何使用Seaborn进行单变量数据可视化,并将结果保存为文件。请准备您的数据和脚本,我们将在下一节课中深入探讨。如果您有任何问题,或者需要进一步的解释,请随时提问。当您准备好继续下一课时,请说 “/continue”

现在,我们将继续我们的课程,专注于在服务器环境下使用Seaborn进行单变量数据可视化并将结果保存为文件。🦌


主题: 单变量数据可视化与文件保存


1.2 单变量数据可视化

单变量数据可视化是数据分析的基础,它帮助我们理解数据集中单个变量的分布情况。在没有图形用户界面的服务器环境下,我们依然可以使用Seaborn生成有用的可视化,并将这些可视化保存为文件进行查看。

单变量数据可视化可以通过多种方式进行,包括但不限于直方图、密度图和计数图。

直方图

以下是如何使用Seaborn创建直方图并将其保存为文件的示例:

import seaborn as sns
import matplotlib.pyplot as plt# 加载数据
data = sns.load_dataset('tips')# 创建直方图
sns.histplot(data['total_bill'], kde=True)# 定义标题
plt.title('Total Bill Histogram')# 保存图形到文件
plt.savefig('total_bill_histogram.png')

在这个例子中,我们绘制了tips数据集中total_bill列的直方图,并使用了内核密度估计(KDE)来平滑分布。然后,我们为图形设置了标题,并将其保存为名为total_bill_histogram.png的文件。

结果:
在这里插入图片描述

接下来,我们将介绍如何使用Seaborn绘制折线图和散点图,并将它们保存为文件,以便在没有图形用户界面的服务器环境下查看。


折线图(Line Plots)

折线图非常适合展示数据随时间或有序类别变化的趋势。以下是使用Seaborn创建折线图并将其保存为文件的示例:

import seaborn as sns
import matplotlib.pyplot as plt# 加载数据
data = sns.load_dataset('flights')# 转换数据为适合折线图的格式
pivot_data = data.pivot(index="month", columns="year", values="passengers")# 创建折线图
sns.lineplot(data=pivot_data)# 定义标题
plt.title('Flights Passengers by Month')# 保存图形到文件
plt.savefig('flights_passengers_lineplot.png')

在这个例子中,我们使用了flights数据集,该数据集记录了不同年份、不同月份的航班乘客数量。我们首先将数据转换为适合折线图的格式,然后使用Seaborn的lineplot方法绘制了折线图,并将其保存为flights_passengers_lineplot.png文件。

在这里插入图片描述

散点图(Scatter Plots)

散点图用于展示两个连续变量之间的关系。以下是使用Seaborn创建散点图并将其保存为文件的示例:

import seaborn as sns
import matplotlib.pyplot as plt# 加载数据
tips = sns.load_dataset('tips')# 创建散点图
sns.scatterplot(x='total_bill', y='tip', data=tips)# 定义标题
plt.title('Tip vs Total Bill')# 保存图形到文件
plt.savefig('tip_vs_total_bill_scatterplot.png')

在这个例子中,我们使用了tips数据集来展示小费金额与账单总额之间的关系。我们使用Seaborn的scatterplot方法来创建散点图,并将其保存为tip_vs_total_bill_scatterplot.png文件。

在这里插入图片描述

练习

请尝试针对您感兴趣的数据集创建不同类型的单变量图形,并将它们保存为文件。尝试不同的图形类型和参数设置,以更好地理解您的数据。


接下来,我们将探讨如何使用Seaborn进行多变量数据可视化,并确保在无图形用户界面的环境中仍然能够查看和分析这些可视化结果。请准备您的数据和代码,我们很快就会开始这一部分。如果您有任何问题或需要进一步的解释,请随时提问。当您准备好继续下一课时,请说 “/continue”

现在我们将继续我们的课程,探讨多变量数据可视化以及如何将生成的图形保存为文件。🦌


1.3 多变量数据可视化

多变量数据可视化是指同时观察两个或更多变量的分布情况。这可以帮助我们理解变量之间的关系,例如相关性、模式和趋势。Seaborn提供了多种函数来创建多变量数据图形,例如散点图、线图、热图等。

使用Seaborn创建散点图

散点图是展示两个连续变量之间关系的经典方法。以下是如何使用Seaborn创建散点图并将其保存为文件的示例:

import seaborn as sns
import matplotlib.pyplot as plt# 加载数据集
data = sns.load_dataset("tips")# 创建散点图
sns.set(style="whitegrid")
ax = sns.scatterplot(x='total_bill', y='tip', data=data)# 添加标题和标签
ax.set(title='Total Bill vs Tip', xlabel='Total Bill', ylabel='Tip')# 保存图形到文件
plt.savefig('scatterplot.png')

在这个示例中,我们使用scatterplot函数来创建一个散点图,展示了总账单和小费之间的关系。

练习

请尝试为您感兴趣的两个变量创建一个散点图,并将其保存为文件。探索不同的变量组合,尝试理解它们之间的关系。


接下来,我们将介绍如何使用Seaborn进行分类数据可视化。请准备您的数据和代码,我们将在下一节课中继续深入讨论。如果您在实践中遇到任何问题,或者需要进一步的解释,请随时提问。当您准备好继续下一节课时,请说 “/continue”

1.4 阴影折线图

GPT这些内容给了之后其他的对我不重要了,我不需要它再生成了。

我的需求是做阴影折线图,然后搜了一下找到了知乎代码,我把结尾改成保存了然后完整代码是:

import random
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snssns.set_style("darkgrid")
plt.title("Reward Log")
data = pd.DataFrame.from_dict({"step": [random.randint(1, 100) for _ in range(5000)], # 随机生成 5000 个 step 索引"reward": [random.random() for _ in range(5000)],      # 为每一个 step 随机生成对应的reward}
)
sns.lineplot(data=data, x="step", y="reward", color="orange")  # 传入 DataFrame 绘制# 保存图形到文件
plt.savefig('shadowlineplot.png')

在这里插入图片描述

参考;这种带阴影的折线图是怎么做出来的啊? - 何枝的回答 - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/269172.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day34贪心算法 part03

1005. K 次取反后最大化的数组和 简单 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数…

【数据结构和算法初阶(C语言)】带环链表问题详解(快慢指针的烧脑应用)

目录 1.铺垫-----带环链表基本了解 2. 题目:环形链表 3.环形链表|| ​编辑 3.1题解1 3.2 题解2 4.总结 1.铺垫-----带环链表基本了解 环形链表题目启迪: 环形链表特点:遍历链表会出现一模一样的地址 2. 题目:环形链表 给…

C++输入输出(I\O)

我们知道C是由C语言发展而来的,几乎完全兼容C语言,换句话说,你可以在C里面编译C语言代码。如下图: C语言是面向过程的语言,C在C语言之上增加了面向对象以及泛型编程机制,因此C更适合中大型程序的开发,然而C…

Linux 设置快捷命令

以ll命令为例: 在 Linux 系统上,ll 命令通常不是一个独立的程序,而是 ls 命令的一个别名。 这个别名通常在用户的 shell 配置文件中定义,比如 .bashrc 或 .bash_aliases 文件中。 要在 Debian 上启用 ll 命令,你可以按…

李沐动手学习深度学习——4.5练习

1. 在本节的估计问题中使用λ的值进行实验。绘制训练和测试精度关于λ的函数。观察到了什么? 修改代码运行如图所示,可以发现对于lamda值的变化而言,对于训练loss和测试loss的影响不大。但是如果λ 太大后,train和test的loss会变得…

Cyber RT 组件

场景 无人车上的传感器数据可能需要被融合,比如在车辆上安装了多颗雷达,不同雷达由于安装位置与自身参数差异,可探测的角度、范围、距离等都是不尽相同的,现在需要将不同雷达感知到的数据融合在一起以建立车辆所处的完整环境&…

机器学习-面经(part5、KNN和SVM)

8. KNN 8.1 简述一下KNN算法的原理? 一句话概括:KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别 工作原理:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数…

TypeError: the JSON object must be str, bytes or bytearray, not dict

参考文章:https://blog.csdn.net/yuan2019035055/article/details/124934362 Python基础系列(一)搞懂json数据解析与字典之间的关系 代码: 报错信息: TypeError: the JSON object must be str, bytes or bytearray, not dict …

局域网如何远程?

局域网远程一直是许多用户在处理远程连接需求时面临的一个难题。随着技术的不断进步,一种名为“天联”的组网解决方案应运而生。天联组网具有操作简单、跨平台应用、无网络要求以及独创的安全加速方案等独特优势,在解决各行业客户的远程连接需求方面发挥…

解决ipconfig不能使用的问题

问题所示:ipconfig不是内部或外部命令,也不是可运行的程序或批处理文件。 解决办法如下: 1.右击此电脑,点击属性设置: 2.点击高级系统设置 3.点击进入环境变量 4.在系统变量中进行设置,双击PATH进行配置 5.点击新建&am…

【如何在Docker中,修改已经挂载的卷(Volume)】

曾梦想执剑走天涯,我是程序猿【AK】 提示:添加投票!!! 目录 简述概要知识图谱 简述概要 如何在Docker中,修改已经挂载的卷(Volume) 知识图谱 在Docker中,修改已经挂载…

matlab 提取分割位于多边形区域边缘内部或边缘上的点

[in,on] = inpolygon(xq,yq,xv,yv) xv 和 yv 为定义的多边形区域的,如xv = [1 4 4 1 1 ];yv = [1 1 4 4 1 ];注意最后一个数字与第一个重复,保证多边形闭合; xq 和 yq 为待查询的点in:在多边形内部和边缘的点序号on:仅在多边形边缘的点序号 提取分割方法: matrix=[xq yq…

智能汽车加速车规级存储应用DS2431P+TR 汽车级EEPROM 存储器IC

DS2431PT&R是一款1024位1-Wire EEPROM芯片,由四页存储区组成,每页256位。数据先被写入一个8字节暂存器中,经校验后复制到EEPROM存储器。该器件的特点是,四页存储区相互独立,可以单独进行写保护或进入EPROM仿真模式…

折线图实现柱状阴影背景的demo

这个是一个由官网的基础折线图实现的流程,将涉及到的知识点附上个人浅薄的见解,源码在最后,需要的可自取。 折线图 成果展示代码注解参数backgroundColordataZoomlegendtitlexAxisyAxisgridseries 源码 成果展示 官网的基础折线图&#xff…

【Python】OpenCV-使用ResNet50进行图像分类

使用ResNet50进行图像分类 如何使用ResNet50模型对图像进行分类。 import os import cv2 import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions from tensorflow.keras.preprocessing import image# 设置…

计算机网络物理层知识点总结

本篇博客是基于谢希仁编写的《计算机网络》和王道考研视频总结出来的知识点,本篇总结的主要知识点是第二章的物理层。上一章的传送门:计算机网络体系结构-CSDN博客 通信基础 物理层概念 物理层解决如何在连接各种计算机的传输媒体上传输数据比特流&am…

leetcode刷题日记-K个一组翻转(链表)

题目描述 解题思路 第一种解法,也是我们常用的一种解题方法,首先遍历一遍列表,将列表中的val的值存放到数组中,然后按照要求对数组进行排序,排序之后,我们重新定义节点,将节点按照排完序的结果…

如何远程连接MySQL数据库?

在现代互联网时代,远程连接MySQL数据库成为了许多开发者和管理员必备的技能。这不仅方便了数据的共享和管理,还可以使多个团队在全球范围内协同工作。本文将介绍如何通过天联组网实现远程连接MySQL数据库,并实现高效的信息远程通信。 天联组网…

力扣hot100:1.两数之和

输入中可能存在重复值 。 分析&#xff1a; 本题需要返回的是数组下标&#xff0c;因此如果需要使用排序然后双指针的话&#xff0c;需要用到哈希表&#xff0c;但是由于输入中可能存在重复值&#xff0c;因此哈希表的value值必须是vector<int>。 使用双指针求目标值targ…

OpenDDS 跨主机通信配置与实现(C++和Java)

目录 1、编写一个示例1.1、IDL接口定义1.2、MPC文件介绍1.3、生成解决方案 2、通讯测试2.1、使用repo server 通讯2.2、使用repo ipport方式2.3、对等发现face 1、编写一个示例 1.1、IDL接口定义 假设我们现在有以下结构&#xff1a; struct MessagerOne { int subject_id; …