【Pytorch】进阶学习:深入解析 sklearn.metrics 中的 classification_report 函数---分类性能评估的利器

【Pytorch】进阶学习:深入解析 sklearn.metrics 中的 classification_report 函数—分类性能评估的利器
在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 📊一、分类性能评估的重要性
  • 🔍二、深入了解classification_report函数
  • 🚀三、使用classification_report评估模型性能
  • 🔎四、解读classification_report的内容
  • 🎯五、优化模型性能
  • 📈六、使用classification_report进行模型选择
  • 💡七、总结与进一步学习

📊一、分类性能评估的重要性

在机器学习中,分类任务是非常常见的一类问题。当我们训练一个分类模型后,如何评估模型的性能是一个至关重要的问题。sklearn.metrics中的classification_report函数就是评估分类模型性能的一个利器。通过这个函数,我们可以得到模型的准确率、精确率、召回率以及F1分数等指标,从而全面评估模型的性能。

🔍二、深入了解classification_report函数

classification_report函数是sklearn.metrics模块中的一个函数,它接收真实标签和预测标签作为输入,并返回一个文本报告,展示了主要分类指标的详细信息。

下面是classification_report函数的基本用法:

from sklearn.metrics import classification_reporty_true = [0, 1, 2, 2, 0]  # 真实标签
y_pred = [0, 0, 2, 2, 0]  # 预测标签report = classification_report(y_true, y_pred)
print(report)

输出内容将包括每个类别的精确度、召回率、F1分数以及支持数(即该类别的样本数):

              precision    recall  f1-score   support0       0.67      1.00      0.80         21       0.00      0.00      0.00         12       1.00      1.00      1.00         2accuracy                           0.80         5macro avg       0.56      0.67      0.60         5
weighted avg       0.67      0.80      0.72         5

🚀三、使用classification_report评估模型性能

在机器学习的实践中,我们通常会在验证集或测试集上评估模型的性能。下面是一个使用classification_report评估模型性能的示例:

首先,我们定义并训练一个支持向量机分类器model,并且我们有一个测试集X_test和对应的真实标签y_test

# 导入sklearn.datasets模块中的load_iris函数,用于加载鸢尾花数据集
from sklearn.datasets import load_iris# 导入sklearn.metrics模块中的classification_report函数,用于生成分类报告
from sklearn.metrics import classification_report# 导入sklearn.model_selection模块中的train_test_split函数,用于划分数据集为训练集和测试集
from sklearn.model_selection import train_test_split# 导入sklearn.svm模块中的SVC类,用于创建支持向量机分类器
from sklearn.svm import SVC# 使用load_iris函数加载鸢尾花数据集
iris = load_iris()# 获取数据集中的特征数据,存储在变量X中
X = iris.data# 获取数据集中的目标标签,存储在变量y中
y = iris.target# 使用train_test_split函数划分数据集,其中80%的数据作为训练集,20%的数据作为测试集
# random_state参数用于设置随机数生成器的种子,确保每次划分的结果一致
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建一个SVC分类器对象,使用线性核函数,C值为1,并设置随机数生成器的种子为42
model = SVC(kernel='linear', C=1, random_state=42)# 使用fit方法对模型进行训练,传入训练集的特征数据和目标标签
model.fit(X_train, y_train)# 使用训练好的模型对测试集进行预测,返回预测的目标标签
y_pred = model.predict(X_test)# 使用classification_report函数生成分类报告,传入测试集的真实目标标签和预测的目标标签
# target_names参数传入鸢尾花的种类名称,用于在报告中显示具体的类别名称
report = classification_report(y_test, y_pred, target_names=iris.target_names)# 打印分类报告,展示每个类别的精确度、召回率、F1分数等信息
print(report)

这段代码首先加载了鸢尾花数据集,并划分了训练集和测试集。然后,我们使用线性支持向量机(SVC)训练了一个分类模型,并在测试集上进行了预测。最后,我们使用classification_report函数打印出了模型的评估报告:

              precision    recall  f1-score   supportsetosa       1.00      1.00      1.00        10versicolor       1.00      1.00      1.00         9virginica       1.00      1.00      1.00        11accuracy                           1.00        30macro avg       1.00      1.00      1.00        30
weighted avg       1.00      1.00      1.00        30

🔎四、解读classification_report的内容

classification_report的输出内容包含了丰富的信息,下面我们来解读一下这些内容:

  • precision:精确率,表示预测为正例的样本中真正为正例的比例。精确率越高,说明模型预测为正例的样本中,真正为正例的样本越多。
  • recall:召回率,表示真正为正例的样本中被预测为正例的比例。召回率越高,说明模型找出了越多的真正正例。
  • f1-score:F1分数,是精确率和召回率的调和平均数。F1分数越高,说明模型在精确率和召回率之间取得了更好的平衡。
  • support:支持数,即该类别的样本数。

此外,classification_report还会输出每个类别的上述指标以及它们的平均值。这些指标可以帮助我们全面评估模型的性能,并根据需要调整模型参数或尝试其他模型。

🎯五、优化模型性能

当我们得到classification_report的评估结果后,如果发现模型的性能不佳,我们可以尝试一些方法来优化模型性能:

  1. 调整模型参数:根据评估结果,我们可以调整模型的参数,如改变学习率、增加迭代次数、调整正则化项等,以提高模型的性能。
  2. 特征工程:通过特征选择、特征提取或特征变换等方法,改善输入特征的质量,从而提高模型的性能。
  3. 尝试其他模型:如果当前模型的性能无法满足需求,我们可以尝试其他类型的模型,如决策树、随机森林、神经网络等,看是否能够获得更好的性能。

📈六、使用classification_report进行模型选择

当我们有多个候选模型时,可以使用classification_report来辅助我们进行模型选择。通过比较不同模型在测试集上的评估报告,我们可以选择性能最优的模型。

下面是一个简单的示例,展示了如何使用classification_report来比较两个模型的性能:

from sklearn.datasets import load_iris
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练第一个模型:支持向量机
model1 = SVC(kernel='linear', C=1, random_state=42)
model1.fit(X_train, y_train)
y_pred1 = model1.predict(X_test)
report1 = classification_report(y_test, y_pred1, target_names=iris.target_names)
print("Model 1 (SVC) Report:\n", report1)# 训练第二个模型:K近邻
model2 = KNeighborsClassifier(n_neighbors=3)
model2.fit(X_train, y_train)
y_pred2 = model2.predict(X_test)
report2 = classification_report(y_test, y_pred2, target_names=iris.target_names)
print("Model 2 (KNN) Report:\n", report2)

在上面的代码中,我们训练了两个不同的模型:支持向量机(SVC)和K近邻(KNN),并分别打印了它们的classification_report。通过比较两个报告的指标,我们可以选择性能更好的模型。

💡七、总结与进一步学习

classification_report是评估分类模型性能的一个强大工具,它提供了丰富的指标来帮助我们全面评估模型的性能。通过解读报告中的精确率、召回率、F1分数等指标,我们可以了解模型在不同类别上的表现,并根据需要进行优化。

要进一步提高模型性能,除了调整模型参数和进行特征工程外,还可以尝试集成学习、深度学习等更高级的方法。此外,了解不同评估指标的含义和优缺点也是非常重要的,这有助于我们更准确地评估模型的性能。

希望本博客能够帮助你深入理解classification_report函数,并学会如何使用它来评估和优化分类模型的性能。如果你对机器学习领域的其他话题感兴趣,欢迎继续探索和学习!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/272727.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序-侧滑删除

简介 movable-view和movable-area是可移动的视图容器,在页面中可以拖拽滑动。 本篇文章将会通过该容器实现一个常用的拖拽按钮功能。 使用效果 代码实现 side-view.wtml 布局见下面代码,left view为内容区域,right view为操作按钮&a…

uniapp让输入框保持聚焦状态,不会失去焦点

使用场景:当输入框还有发送按钮的时候,点击发送希望软键盘不消失,还可以继续输入,或者避免因输入图片标签造成的屏闪问题 多次尝试后发现一个很实用的方法,适用input输入框和editor输入框 解决办法:把cli…

数学建模-动态规划(美赛运用)

动态规划模型的要素是对问题解决的抽象,其可分为: 阶段。指对问题进行解决的自然划分。例如:在最短线路问题中,每进行走一步的决策就是一个阶段。 状态。指一个阶段开始时的自然状况。例如:在最短线路问题中&#xff…

《探索虚拟与现实的边界:VR与AR谁更能引领未来?》

引言 在当今数字时代,虚拟现实(VR)和增强现实(AR)技术正以惊人的速度发展,并逐渐渗透到我们的日常生活中。它们正在重新定义人与技术、人与环境之间的关系,同时也为各行各业带来了全新的可能性。然而,究竟是VR还是AR更有潜力改变未来?本文将围绕这一问题展开深入探讨。…

HTML5:七天学会基础动画网页10

继续介绍3D转换: 3D转换:rotate3d 方法与说明 rrotateX(angle)otate3d(x,y,z,angle[角度]) 3D转换,正常取值0/1,0代表当前轴线不进行旋转,1反之,例:rotate3d(1,1,1,30deg),代表三个轴线都要旋转30度 rotate3d(0…

Django学习笔记

Django学习笔记 一、Django整体流程跑通 1.1安装 pip install django //安装 import django //在python环境中导入django django.get_version() //获取版本号,如果能获取到,说明安装成功Django目录结构 Python310-Scripts\django-admi…

如何在Windows系统使用固定tcp公网地址ssh远程Kali系统

文章目录 1. 启动kali ssh 服务2. kali 安装cpolar 内网穿透3. 配置kali ssh公网地址4. 远程连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 简单几步通过[cpolar 内网穿透](cpolar官网-安全的内网穿透工具 | 无需公网ip | 远程访问 | 搭建网站)软件实现ssh 远程连接kali! …

虚函数与纯虚函数有什么区别?

总的来说有两点区别: 1.虚函数的作用主要是矫正指针(口语化的说法) 2.虚函数不一定要重新定义,纯虚函数一定要定义(口语化的说法) 1). 虚函数的作用主要是矫正指针,使得基类的指针…

设计模式学习系列 -- 随记

文章目录 前言 一、设计模式是什么? 二、设计模式的历史 三、为什么以及如何学习设计模式? 四、关于模式的争议 一种针对不完善编程语言的蹩脚解决方案 低效的解决方案 不当使用 五、设计模式分类 总结 前言 最近可能工作生活上的稳定慢慢感觉自己丢失…

力扣中档题:删除排序链表中的 重复元素

此题可以选择暴力解决,首先将链表中的元素放到数组中,然后将数组中的重复元素放到另一个数组中,最后再判断并将目标值放到第三个数组中排序再改链表,注意链表nextNULL的操作 struct ListNode* deleteDuplicates(struct ListNode*…

JVM基本概念、命令、参数、GC日志总结

原文: 赵侠客 一、前言 NPE(NullPointerException)和OOM(OutofMemoryError)在JAVA程序员中扮演着重要的角色,它也是很多人始终摆脱不掉的梦魇,与NPE不同的是OOM一旦在生产环境中出现就意味着只靠代码已经无…

seo蜘蛛池的概念!蚂蚁SEO

蜘蛛池是一种特殊的网络营销技术,它的主要作用是吸引搜索引擎爬虫,提高网站的收录和排名,从而增加网站的流量和曝光度。 蚂蚁SEO是一个SEO工具,可以帮助您提高网站权重,吸引更多的搜索引擎爬虫,提高网站的…

java ~ word模板填充字符后输出到指定目录

word文件格式&#xff1a; jar包&#xff1a; <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.10.0</version></dependency>样例代码&#xff1a; // 封装参数集合Map<String, Ob…

数据库中 SQL Hint 是什么?

前言 最近在调研业界其他数据库中 SQL Hint 功能的设计和实现&#xff0c;整体上对 Oracle、Mysql、Postgresql、 Apache Calcite 中的 SQL Hint 的设计和功能都进行了解&#xff0c;这里整理一篇文章来对其进行梳理&#xff0c;一是帮助自己未来回顾&#xff0c;加深自己的思…

从零开始:神经网络(2)——MP模型

声明&#xff1a;本文章是根据网上资料&#xff0c;加上自己整理和理解而成&#xff0c;仅为记录自己学习的点点滴滴。可能有错误&#xff0c;欢迎大家指正。 神经元相关知识&#xff0c;详见从零开始&#xff1a;神经网络——神经元和梯度下降-CSDN博客 1、什么是M-P 模型 人…

云原生构建 微服务、容器化与容器编排

第1章 何为云原生&#xff0c;云原生为何而生 SOA也就是面向服务的架构 软件架构的发展主要经历了集中式架构、分布式架构以及云原生架构这几代架构的发展。 微服务架构&#xff0c;其实是SOA的另外一种实现方式&#xff0c;属于SOA的子集。 在微服务架构下&#xff0c;系统…

【sgExcelGrid】自定义组件:简单模拟Excel表格拖拽、选中单元格、横行、纵列、拖拽圈选等操作

特性&#xff1a; 可以自定义拖拽过表格可以点击某个表格&#xff0c;拖拽右下角小正方形进行任意方向选取单元格支持选中某一行、列支持监听selectedGrids、selectedDatas事件获取选中项的DOM对象和数据数组支持props自定义显示label字段别名 sgExcelGrid源码 <template&g…

java-ssm-jsp基于ssm的冰淇淋在线购买网站

java-ssm-jsp基于ssm的冰淇淋在线购买网站 获取源码——》公主号&#xff1a;计算机专业毕设大全

了解 HTTPS 中间人攻击:保护你的网络安全

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

C++单例模式、工厂模式

一、单例模式 (一) 什么是单例模式 1. 是什么&#xff1f; 在系统的整个生命周期内&#xff0c;一个类只允许存在一个实例。 2. 为什么&#xff1f; 两个原因&#xff1a; 节省资源。方便控制&#xff0c;在操作公共资源的场景时&#xff0c;避免了多个对象引起的复杂操作…