五、分布式锁-redission

源码仓库地址:git@gitee.com:chuangchuang-liu/hm-dingping.git

1、redission介绍

目前基于redis的setnx特性实现的自定义分布式锁仍存在的问题:

问题描述
重入问题同一个线程无法多次获取统一把锁。当方法A成功获取锁后,调用方法B,方法B也要获取锁,此时由于锁是不可重入的,也就是被方法A占用着,此时就产生了死锁的问题
不可重试自定义分布式锁无失败重试机制
超时释放锁的超时释放虽然可以避免死锁问题,但确实也可能存在业务执行时间比较长的情况,那这种情况下就仍存在安全隐患问题
主从一致性如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。

什么是Redission?
Redission是一个用于Java的Redis客户端,它提供了丰富的特性,包括内存数据网格的功能。它支持同步/异步/RxJava/Reactive API,拥有超过50种基于Redis的Java对象和服务。Redission的使用非常简单,没有学习曲线,您不需要了解任何Redis命令就可以开始使用。(GitHub - redisson/redisson, Redisson官网)
Redission可以让Java应用更方便地访问和操作Redis数据存储,适合于需要高性能和高并发的应用场景。

2、快速开始

  1. 导入依赖
<!--redission-->
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version>
</dependency>
  1. Redission配置客户端
@Configuration
public class RedisConfig {@Beanpublic RedissonClient redisClient(){Config config = new Config();// 可以用"rediss://"来启用SSL连接config.useSingleServer().setAddress("redis://192.168.224.128:6379").setPassword("123456");return Redisson.create(config);}
}
  1. 使用Redission分布式锁
@Resource
private RedissionClient redissonClient;@Test
void testRedisson() throws Exception{//获取锁(可重入),指定锁的名称RLock lock = redissonClient.getLock("anyLock");//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);//判断获取锁成功if(isLock){try{System.out.println("执行业务");          }finally{//释放锁lock.unlock();}}
}

3、redission可重入锁原理

3.1、原理介绍

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。 、

而在redission中,也支持这种可重入锁原理,是通过redis的hash数据结构实现的。其中key表示这把锁是否存在,field判断锁是被哪个线程持有,value则记录锁被持有次数。
image.png

3.2、源码剖析

  • 获取锁

其中各参数解释:
KEYS[1]:锁的名称
ARGV[1]:锁过期时间
ARGV[2]:id + “:” + threadId

"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"return redis.call('pttl', KEYS[1]);"

判断锁是否存在
如果不存在,则设置当前线程标识,计数器+1;设置过期时间;
如果存在。做二次判断,判断锁的持有线程是不是自己?
如果是,计数器+1,重置锁的过期时间;
如果不是,获取锁失败,返回锁的剩余过期时间

  • 释放锁

其中各参数解释:
KEYS[1]:锁的名称
KEYS[2]:订阅频道
ARGV[1]:是要发布的消息内容
ARGV[2]:锁过期时间
ARGV[3]:id + “:” + threadId

"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
"else " +
"redis.call('del', KEYS[1]); " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end; " +
"return nil;"

判断锁是不是当前线程?
不是==>直接返回
是==>计数器–
二次判断,判断计数器是否大于0
大于0==>重置锁过期时间
否则==>真正释放锁

4、redission锁重试和WatchDog机制

4.1、redission是如何解决不可重试的?

源码剖析:
用户调用tryLock方法时,指定waitTime最大等待时间

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {long time = unit.toMillis(waitTime);long current = System.currentTimeMillis();long threadId = Thread.currentThread().getId();Long ttl = tryAcquire(waitTime, leaseTime, unit, threadId);// lock acquiredif (ttl == null) {return true;}time -= System.currentTimeMillis() - current;if (time <= 0) {acquireFailed(waitTime, unit, threadId);return false;}current = System.currentTimeMillis();RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) {if (!subscribeFuture.cancel(false)) {subscribeFuture.onComplete((res, e) -> {if (e == null) {unsubscribe(subscribeFuture, threadId);}});}acquireFailed(waitTime, unit, threadId);return false;}try {time -= System.currentTimeMillis() - current;if (time <= 0) {acquireFailed(waitTime, unit, threadId);return false;}while (true) {long currentTime = System.currentTimeMillis();ttl = tryAcquire(waitTime, leaseTime, unit, threadId);// lock acquiredif (ttl == null) {return true;}time -= System.currentTimeMillis() - currentTime;if (time <= 0) {acquireFailed(waitTime, unit, threadId);return false;}// waiting for messagecurrentTime = System.currentTimeMillis();if (ttl >= 0 && ttl < time) {subscribeFuture.getNow().getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);} else {subscribeFuture.getNow().getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);}time -= System.currentTimeMillis() - currentTime;if (time <= 0) {acquireFailed(waitTime, unit, threadId);return false;}}} finally {unsubscribe(subscribeFuture, threadId);}//        return get(tryLockAsync(waitTime, leaseTime, unit));
}
  1. 计算等待时间和获取当前时间:将用户指定的等待时间转换为毫秒,并记录方法调用时的当前时间。
  2. 尝试获取锁。如果ttl为空,则获取锁成功;否则,返回的是其他线程占用锁的剩余有效时间
  3. 检查剩余等待时间。如果time小于等于0,调用acquireFailed方法返回false
  4. 订阅锁。通过subscribe方法订阅相关的锁。如果在剩余时间内未能订阅成功,处理取消订阅并调用acquireFailed方法,返回false。
  5. 循环等待锁释放消息。等待过程中会调用tryAcquire方法获取锁,如果获取成功返回true
  6. 处理锁的ttl。如果ttl大于0,返回锁被其他线程占用的剩余过期时间(ttl)。更新剩余等待时间(time)。以time和ttl中较小的值继续等待再次尝试。
  7. 再次检查等于剩余等待时间。如果小于0,调用acquireFailed方法返回false
  8. 循环结束后(要么获取锁成功,要么超过最大等待时间了),最终调用unsubscribe方法取消订阅

结论1:redission不是获取锁失败后立即进行重试,而是等待“一定时间”后再进行重试,节省了一定的CPU资源,对服务器性能有一定提升;
结论2:一定要采取调用tryLock方法携带参数waitTime的重载方法,其他重载的tryLock方法底层是不具备重试机制的。

4.2、redission是如何解决锁超时释放的-看门狗机制?

自定义分布式锁仍存在的一个问题是:锁的超时释放虽然可以避免死锁问题,但确实也可能存在业务执行时间比较长的情况,那这种情况下业务还未执行完毕,锁就被释放了,存在一定的安全隐患。
源码剖析:

private RFuture<Boolean> tryAcquireOnceAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {if (leaseTime != -1) {return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_NULL_BOOLEAN);}RFuture<Boolean> ttlRemainingFuture = tryLockInnerAsync(waitTime,commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_NULL_BOOLEAN);ttlRemainingFuture.onComplete((ttlRemaining, e) -> {if (e != null) {return;}// lock acquiredif (ttlRemaining) {// 开启任务更新过期时间scheduleExpirationRenewal(threadId);}});return ttlRemainingFuture;
}
private void renewExpiration() {ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (ee == null) {return;}Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {@Overridepublic void run(Timeout timeout) throws Exception {ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (ent == null) {return;}Long threadId = ent.getFirstThreadId();if (threadId == null) {return;}RFuture<Boolean> future = renewExpirationAsync(threadId);future.onComplete((res, e) -> {if (e != null) {log.error("Can't update lock " + getName() + " expiration", e);return;}if (res) {// reschedule itselfrenewExpiration();}});}}, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);ee.setTimeout(task);
}
protected RFuture<Boolean> renewExpirationAsync(long threadId) {return evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +"redis.call('pexpire', KEYS[1], ARGV[1]); " +"return 1; " +"end; " +"return 0;",Collections.singletonList(getName()),internalLockLeaseTime, getLockName(threadId));}
  1. 如果没有指定leaseTime,那么底层会默认传入commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()看门狗时间
  2. 在leasetime的1/3处时间,会创建一个任务renewExpirationAsync方法来异步地更新重置锁过期时间
  3. 递归地调用自身来更新锁过期时间,直到业务处理完毕。

至此redission解决了因业务阻塞而导致锁提前释放的问题

业务执行完毕,释放锁源码剖析:

public RFuture<Void> unlockAsync(long threadId) {RPromise<Void> result = new RedissonPromise<Void>();// 释放锁RFuture<Boolean> future = unlockInnerAsync(threadId);future.onComplete((opStatus, e) -> {// 取消锁失效时间更新重置任务cancelExpirationRenewal(threadId);if (e != null) {result.tryFailure(e);return;}if (opStatus == null) {IllegalMonitorStateException cause = new IllegalMonitorStateException("attempt to unlock lock, not locked by current thread by node id: "+ id + " thread-id: " + threadId);result.tryFailure(cause);return;}result.trySuccess(null);});return result;
}void cancelExpirationRenewal(Long threadId) {ExpirationEntry task = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (task == null) {return;}if (threadId != null) {task.removeThreadId(threadId);}if (threadId == null || task.hasNoThreads()) {Timeout timeout = task.getTimeout();if (timeout != null) {timeout.cancel();}// 删除递归更新锁时间任务EXPIRATION_RENEWAL_MAP.remove(getEntryName());}
}

当业务执行完毕且锁正常释放后,删除递归更新锁时间任务,避免redission一直递归创建任务更新锁过期时间

5、redission锁的MultiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例
此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。
1653553998403.png
为了解决该问题,redission的方案是去掉redis集群主从关系,每一个节点都是平等的。加锁逻辑是需要写入到每一个节点上才算加锁成功。这样,当某一台机器宕机了,这台机器的slave节点变为master节点,此时另一个线程趁虚而入,虽然可以正常写入,但其它机器仍会写入失败,最终结果仍是获取锁失败,从而保证了获取锁的可靠性。
1653554055048.png
MulitLock源码剖析:

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {//        try {//            return tryLockAsync(waitTime, leaseTime, unit).get();//        } catch (ExecutionException e) {//            throw new IllegalStateException(e);//        }long newLeaseTime = -1;if (leaseTime != -1) {if (waitTime == -1) {newLeaseTime = unit.toMillis(leaseTime);} else {newLeaseTime = unit.toMillis(waitTime)*2;}}long time = System.currentTimeMillis();long remainTime = -1;if (waitTime != -1) {remainTime = unit.toMillis(waitTime);}long lockWaitTime = calcLockWaitTime(remainTime);int failedLocksLimit = failedLocksLimit();List<RLock> acquiredLocks = new ArrayList<>(locks.size());for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();) {RLock lock = iterator.next();boolean lockAcquired;try {if (waitTime == -1 && leaseTime == -1) {lockAcquired = lock.tryLock();} else {long awaitTime = Math.min(lockWaitTime, remainTime);lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);}} catch (RedisResponseTimeoutException e) {unlockInner(Arrays.asList(lock));lockAcquired = false;} catch (Exception e) {lockAcquired = false;}if (lockAcquired) {acquiredLocks.add(lock);} else {if (locks.size() - acquiredLocks.size() == failedLocksLimit()) {break;}if (failedLocksLimit == 0) {unlockInner(acquiredLocks);if (waitTime == -1) {return false;}failedLocksLimit = failedLocksLimit();acquiredLocks.clear();// reset iteratorwhile (iterator.hasPrevious()) {iterator.previous();}} else {failedLocksLimit--;}}if (remainTime != -1) {remainTime -= System.currentTimeMillis() - time;time = System.currentTimeMillis();if (remainTime <= 0) {unlockInner(acquiredLocks);return false;}}}if (leaseTime != -1) {List<RFuture<Boolean>> futures = new ArrayList<>(acquiredLocks.size());for (RLock rLock : acquiredLocks) {RFuture<Boolean> future = ((RedissonLock) rLock).expireAsync(unit.toMillis(leaseTime), TimeUnit.MILLISECONDS);futures.add(future);}for (RFuture<Boolean> rFuture : futures) {rFuture.syncUninterruptibly();}}return true;}
  1. 遍历锁集合,调用lock.tryLock尝试获取锁。将获取结果传给变量lockAcquired
  2. 如果获取成功,将当前锁存放到acquiredLocks集合中
  3. 获取成功后,如果此时的剩余等待时间小于等于0,释放自己已获取的锁,返回false
  4. 如果获取失败,判断是否具备重试机制
    1. 没有重试,则直接返回false
    2. 有重试机制,将acquiredLocks集合清空,将iterator指针前移,重新遍历尝试。

6、结论

目前已接触的分布式锁有:

  • 可不重入锁/自定义分布式锁:

原理: 利用setnx特性、expire避免死锁、添加线程标识避免锁误删
缺点: 仍存在不可重入、失败不可重试、锁超时失效等问题

  • 可重入锁:

原理: 利用hash数据结构存储线程标识和重入次数、利用看门狗机制延续锁失效时间、利用信号量机制控制等待重试时间
缺点: 仍存在集群模式下redis宕机导致的锁失效问题

  • MulitLock

原理: 利用多个平等的redis节点,所有redis都写入才算获取锁成功
缺点: 维护成本高,实现相对复杂

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/284828.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

说说webpack中常见的Loader?解决了什么问题?

文章目录 一、是什么配置方式 二、特性三、常见的loadercss-loaderstyle-loaderless-loaderraw-loaderfile-loaderurl-loader 参考文献 一、是什么 loader 用于对模块的"源代码"进行转换&#xff0c;在 import 或"加载"模块时预处理文件 webpack做的事情…

【JS】如何避免输入中文拼音时触发input事件

现有一段代码&#xff0c;监听input事件。 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" con…

自动驾驶感知新范式——BEV感知经典论文总结和对比(一)

自动驾驶感知新范式——BEV感知经典论文总结和对比&#xff08;一&#xff09; 博主之前的博客大多围绕自动驾驶视觉感知中的视觉深度估计&#xff08;depth estimation&#xff09;展开&#xff0c;包括单目针孔、单目鱼眼、环视针孔、环视鱼眼等&#xff0c;目标是只依赖于视…

elment-ui el-tabs组件 每次点击后 created方法都会执行2次

先看错误的 日志打印: 错误的代码如下: 正确的日志打印: 正确的代码如下: 前言: 在element-ui的tabs组件中,我们发现每次切换页面,所有的子组件都会重新渲染一次。当子页面需要发送数据请求并且子页面过多时,这样会过多的占用网络资源。这里我们可以使用 v-if 来进行…

数据结构面试常见问题之串的模式匹配(KMP算法)系列-大师改进实现以及原理

&#x1f600;前言 KMP算法是一种改进的字符串匹配算法&#xff0c;由D.E.Knuth&#xff0c;J.H.Morris和V.R.Pratt提出的&#xff0c;因此人们称它为克努特—莫里斯—普拉特操作&#xff08;简称KMP算法&#xff09;。KMP算法的核心是利用匹配失败后的信息&#xff0c;尽量减少…

Jackson 2.x 系列【2】生成器 JsonGenerator

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 案例演示2.1 创建 JsonFactory2.2 创建 JsonGenerator2.3 写入操作2.4 查…

stm32使用定时器实现PWM与呼吸灯

PWM介绍 STM32F103C8T6 PWM 资源&#xff1a; 高级定时器&#xff08; TIM1 &#xff09;&#xff1a; 7 路 通用定时器&#xff08; TIM2~TIM4 &#xff09;&#xff1a;各 4 路 例如定时器2 PWM 输出模式&#xff1a; PWM 模式 1 &#xff1a;在 向上计数 时&#xff0…

GETSHELL方法总结上

渗透的总步骤 1.信息收集找到弱漏洞 2.漏洞挖掘 漏洞验证 3.有一定权限 getshell 4.提权后---渗透 5.内网渗透】 前后台拿shell方法汇总 接下来我们实操一波dedecms也就是织梦cms 如果你们的靶场是空白的 可能是php版本 我们修改为5.2 可能是源码问题 我们不要急着上传…

c++常考基础知识(2)

二.c关键字 关键字汇总 c中共有63个关键字&#xff0c;其中包括int&#xff0c;char&#xff0c;double等类型关键字&#xff0c;if&#xff0c;else&#xff0c;while&#xff0c;do&#xff0c;等语法关键字&#xff0c;还有sizeof等函数关键字。 三.数据结构 1.数组&#x…

【算法】小强爱数学(迭代公式+数论取模)

文章目录 1. 问题2. 输入3. 输出4. 示例5. 分析6. 思路7. 数论&#xff0c;取模相关公式8. 数论&#xff0c;同余定理9. 代码 1. 问题 小强发现当已知 x y B xyB xyB以及 x y A xyA xyA时,能很轻易的算出 x n x_ {n} xn​ y n y_ {n} yn​ 的值.但小强想请你在已知A和B的…

数据结构(五)——树森林

5.4 树和森林 5.4.1 树的存储结构 树的存储1&#xff1a;双亲表示法 用数组顺序存储各结点&#xff0c;每个结点中保存数据元素、指向双亲结点(父结点)的“指针” #define MAX_TREE_SIZE 100// 树的结点 typedef struct{ElemType data;int parent; }PTNode;// 树的类型 type…

【Mysql】硬盘性能压测(Sysbench工具)

1、IOPS和吞吐量介绍 IOPS&#xff08;每秒输入/输出操作数&#xff09;&#xff1a;是衡量存储设备每秒能够执行的输入/输出操作的数量。对于数据库等需要频繁读写的应用程序而言&#xff0c;IOPS 是一个关键的性能指标。更高的 IOPS 意味着存储设备能够处理更多的读写请求&am…

【Vue】三、使用ElementUI实现图片上传

目录 一、前端代码实现 二、后端代码实现 三、调试效果实现 一、前端代码实现 废话不多说直接上代码 <el-form-item prop"image" label"上传图片" v-model"form.image"><el-upload:action"http://localhost:8…

基于springboot+vue的智慧生活商城系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Stable Diffusion 本地训练端口与云端训练端口冲突解决办法

方法之一&#xff0c;修改本地训练所用的端口 1 首先&#xff0c;进入脚本训练器的根目录 例如&#xff1a;C:\MarkDeng\lora-scripts-v1.7.3 找到gui.py 2 修改端口号 因为云端训练器也是占用28000和6006端口 那么本地改成27999和6007也是可以的 保存退出&#xff0c;运行启动…

如何在C语言中使用命令行参数

C语言文章更新目录 C语言学习资源汇总&#xff0c;史上最全面总结&#xff0c;没有之一 C/C学习资源&#xff08;百度云盘链接&#xff09; 计算机二级资料&#xff08;过级专用&#xff09; C语言学习路线&#xff08;从入门到实战&#xff09; 编写C语言程序的7个步骤和编程…

【C++】关联式容器——map和set

1 关联式容器 STL中我们常用的部分容器&#xff0c;比如&#xff1a;vector、list、deque、forward_list(C11)等&#xff0c;这些容器统称为序列式容器&#xff0c;因为其底层为线性序列的数据结构&#xff0c;里面存储的是元素本身。 那什么是关联式容器呢&#xff1f;它与序…

阿里云服务器2核4G服务器收费价格表,1个月和一年报价

阿里云2核4G服务器多少钱一年&#xff1f;2核4G服务器1个月费用多少&#xff1f;2核4G服务器30元3个月、85元一年&#xff0c;轻量应用服务器2核4G4M带宽165元一年&#xff0c;企业用户2核4G5M带宽199元一年。本文阿里云服务器网整理的2核4G参加活动的主机是ECS经济型e实例和u1…

JAVA面向对象编程 JAVA语言入门基础

类与对象的概念 类 (Class) 和对象 (Object) 是面向对象程序设计方法中最核心的概念。 类是对某一类事物的描述(共性)&#xff0c;是抽象的、概念上的定义&#xff1b;而对象则是实际存在的属该类事物的具体的个体&#xff08;个性&#xff09;&#xff0c;因而也称为实例(In…

透视未来工厂:山海鲸可视化打造数字孪生新篇章

在信息化浪潮的推动下&#xff0c;数字孪生工厂项目正成为工业制造领域的新宠。作为一名山海鲸可视化的资深用户&#xff0c;我深感其强大的数据可视化能力和数字孪生技术在工厂管理中的应用价值&#xff0c;同时我们公司之前也和山海鲸可视化合作制作了一个智慧工厂项目&#…