Redis - 高并发场景下的Redis最佳实践_翻过6座大山

文章目录

  • 概述
  • 6座大山之_缓存雪崩 (缓存全部失效)
    • 缓存雪崩的两种常见场景
    • 如何应对缓存雪崩?
  • 6座大山之_缓存穿透(查询不存在的 key)
    • 缓存穿透的原因
    • 解决方案
      • 1. 数据校验
      • 2. 缓存空值
      • 3. 频控
      • 4. 使用布隆过滤器
  • 6座大山之_缓存击穿(热 key 突然失效)
    • 解决思路1:永不过期
    • 解决思路2:逻辑过期
    • 解决思路3:互斥锁
  • 6座大山之_缓存打满(内存空间不够)
    • Redis的淘汰策略
    • 发生场景
    • 解决方案
  • 6座大山之_Hot Key
    • 发现热 Key
    • 处理热 Key
  • 6座大山之_Big Key
    • 问题:
    • 可能发生的场景:
    • 发现大 Key的方法:
    • 删除大 Key的方法:
    • 避免产生大 Key的方法:

在这里插入图片描述


概述

在这里插入图片描述

在高并发系统中,Redis缓存通常被视为数据在存入数据库之前的重要中间层,其设计专注于缓存功能,性能往往比传统数据库高出一个数量级以上。以Redis单实例而言,其读取并发能力可达到10万QPS(官方理论值)。

然而,正因为Redis的高并发处理能力,它在系统链路中扮演着至关重要的角色。一旦系统遭遇高峰期,若我们在Redis处理方面稍有疏忽,可能会导致整个系统瘫痪。

因此,我们接下来将探讨在复杂、高并发的互联网系统中,缓存可能面临的一系列挑战,以及我们可以采取的措施来应对这些挑战。


6座大山之_缓存雪崩 (缓存全部失效)

在这里插入图片描述

在高并发系统中,缓存(通常是Redis)扮演着重要的角色,它被视为数据库的保护伞,能够有效减轻数据库负载。然而,有时候我们可能会面临一个令人头疼的问题:缓存竟然完全失效了,而流量却突然间涌向了数据库,最终可能导致整个系统的不可用。这种情况被称为缓存雪崩。


缓存雪崩的两种常见场景

  1. Redis集群不可用: 即使Redis是以集群模式部署,但当集群中的某个节点不可用时(如重启),如果没有合理的容错机制,可能会导致大量缓存同时失效,从而压垮数据库。

  2. 大量缓存集中失效: 在缓存预热过程中,如果将大量缓存集中预热或更新,那么这些缓存可能在同一时间突然失效,导致系统出现雪崩效应。


如何应对缓存雪崩?

  1. 合理部署Redis集群: 将Redis部署为集群模式,确保数据在多个节点上存在,即使某个节点不可用,也不至于导致所有缓存失效。跨机房部署可以进一步提高容灾能力。

  2. 持久化数据并预热缓存: 在重启Redis等操作前,通过SAVE指令将数据持久化,或者在重启后人工触发缓存预热,确保缓存不会因为重启而全部失效。

  3. 随机设置过期时间: 对于集中预热的缓存数据,设置过期时间时增加一定的随机性,使得缓存失效时间分散,避免集中失效导致的雪崩效应。

在这里插入图片描述

在这里插入图片描述


6座大山之_缓存穿透(查询不存在的 key)

在这里插入图片描述

在缓存系统中,缓存穿透是一种常见而又令人头疼的问题。当用户请求查询缓存中不存在的数据时,这些请求会直接穿透缓存打到数据库,可能导致数据库负载过大,甚至引发系统崩溃。特别是在攻击者持续发起此类请求的情况下,这种攻击行为会对系统造成严重影响。

缓存穿透的原因

缓存穿透通常发生在以下情况下:

  1. 查询不存在的数据: 当用户请求查询缓存中不存在的数据时,如果缓存未命中,请求就会直接打到数据库,导致缓存穿透现象的发生。

  2. 恶意攻击: 攻击者可能会利用此漏洞,不断发起查询不存在数据的请求,造成数据库压力过大,甚至拖垮整个系统。

解决方案

1. 数据校验

在接入层对请求数据进行严格的校验,例如检查ID是否为正整数、参数范围是否合法等,以过滤掉非法请求,避免其穿透缓存直接访问数据库。

2. 缓存空值

对于查询不到的数据,可以在缓存中存储一个特殊的“null”值,下次请求命中缓存时直接返回。但需注意设置空值缓存的过期时间,避免缓存空间被占满。

3. 频控

针对恶意攻击者,可实施频率限制策略,例如基于IP地址进行频控,及时拒绝异常请求,以保护数据库不受攻击。

4. 使用布隆过滤器

布隆过滤器是一种高效的数据结构,可用于判断元素是否存在,但有一定的误判率。可以将所有数据存储在布隆过滤器中,查询缓存前先检查布隆过滤器,如果不存在则直接返回,从而避免不必要的缓存/数据库查询。

在这里插入图片描述

在这里插入图片描述

缓存穿透是高并发系统中常见的问题,但通过合理的预防措施和技术手段,我们可以有效地减轻其影响。在设计和开发过程中,应注重数据校验、缓存空值设置、频率限制以及布隆过滤器等措施的应用,以确保系统的稳定和安全运行。


6座大山之_缓存击穿(热 key 突然失效)

在这里插入图片描述

在缓存系统中,缓存击穿是一种常见但十分危险的现象。当一个热门的缓存 key 在失效瞬间,大量请求同时打到数据库,可能会导致数据库压力过大,甚至引发系统崩溃。

为应对这一挑战,我们可以采取以下解决方案:

解决思路1:永不过期

针对某些热门的 key,可以选择不设置过期时间,而是采用定时任务或定时更新的方式,以避免 key 失效的情况。


解决思路2:逻辑过期

对于不适合永不过期的全量 key,可以设置一个逻辑过期时间。即在缓存中存储数据的同时,记录数据的逻辑过期时间,定时任务异步地重新刷新缓存,并重新设置其物理过期时间和逻辑过期时间。

例如 Key1=Value1 这样的缓存,过期时间是 2024.10.01.00:00,那么物理过期时间可能设置在 2024.10.01.01:00,但是我们将 value 这样存储

{v:"Value1",t:1727715600}

当读取到这个数据过期的时候,我们让任务异步地去重新刷新这个缓存,并重新设置其物理过期时间和逻辑过期时间,这样击穿到数据库的线程就可控为一条异步线程了。

这里的原则是物理过期时间一定要比逻辑过期时间久


解决思路3:互斥锁

使用互斥锁,在发现缓存不存在时加锁,只允许一条线程去数据库查询真实数据,其他线程等待。通过双重检查机制,确保数据在锁被释放前已被写入缓存,从而避免多次数据库访问。

在这里插入图片描述

public String query(String key) {String data = stringRedisTemplate.opsForValue().get(key);if (StringUtils.isEmpty(data)) {RLock locker = redissonClient.getLock("locker_" + key);if (locker.tryLock()) {try {data = stringRedisTemplate.opsForValue().get(key);if (StringUtils.isEmpty(data)) {data = getDataFromDB(key);stringRedisTemplate.opsForValue().set(key, data, 5, TimeUnit.SECONDS);}} finally {locker.unlock();}} else {Thread.sleep(100);return query(key);}}return data;
}

以上是利用 Redisson 实现的分布式锁示例,确保只有一条线程去数据库查询数据,其他线程等待或递归查询缓存,以防止缓存击穿。

之所以使用 1 个分布式锁,这样才能放 1 条线程去数据库访问,但是真实使用的时候并不需要做得这么重,只需要进程级别的加锁即可,因为我们服务的数量通常是有限且不大的,那么有限的并发打到数据库,做一些重复的工作也并不会太影响。

在这里插入图片描述

缓存击穿是高并发系统中常见的问题,但通过合理的策略和技术手段,我们可以有效地预防和应对这一挑战。重视缓存设计和管理,结合适当的方案,可以有效地保护数据库并确保系统的稳定运行。


6座大山之_缓存打满(内存空间不够)

在这里插入图片描述

在Redis中,内存是有限的,当内存使用达到上限时,需要采取一些策略来淘汰一定不使用的key,以释放空间存储新的key。这个上限由配置的maxmemory参数决定,无论是否开启持久化,都会触发淘汰策略。

maxmemory 100mb

Redis的淘汰策略

  1. noeviction(默认): 不删除任意数据,但根据引用计数器进行释放,当内存不足时直接返回错误。

  2. volatile-lru: 选择最近最少使用的带过期时间的数据进行淘汰。

  3. allkeys-lru: 选择最近最少使用的数据进行淘汰,包括带过期时间和不带过期时间的数据。

  4. volatile-lfu: 选择使用频率最低的带过期时间的数据进行淘汰。

  5. allkeys-lfu: 选择使用频率最低的数据进行淘汰,包括带过期时间和不带过期时间的数据。

  6. volatile-random: 随机选择一个带过期时间的数据进行淘汰。

  7. allkeys-random: 随机选择一个数据进行淘汰,包括带过期时间和不带过期时间的数据。

  8. volatile-ttl: 选择最接近过期的数据进行释放操作,只从带过期时间的数据集中选择。

发生场景

  1. 把Redis当存储使用: 部分场景下,将Redis用作数据存储,不设置过期时间,可能导致内存持续增长,触发淘汰策略,不正确的淘汰策略可能导致数据丢失。

  2. Bug数据逐步污染缓存: 开发人员忘记设置过期时间,或设置过期时间过长,导致缓存内存被占满。

解决方案

  1. 存储隔离: 对于永不过期的数据,要与正常的缓存数据做集群的分离,以便设置不同的淘汰策略。

  2. 容量监控:

    • 预估使用容量,给予足够的冗余应对业务发展。
    • 实时监控使用量变化,一旦超过阈值,立即扩容并排查原因。
    • 监控key的过期时间,定期扫描,发现未设置过期时间或设置不合理的key,并及时修复。

在实际应用中,结合合适的淘汰策略和监控手段,能够更好地管理Redis缓存,保障系统的稳定性和可靠性。


6座大山之_Hot Key

热 Key 是指在Redis中频繁访问的某些特定key,可能导致单个实例的性能问题。即使对Redis进行扩容,也无法完全解决热 Key 问题,因为对于同一个key的访问通常会集中在同一个实例上

热 Key 问题可能导致接口超时、网络负载过大、连接数达到上限等一系列问题,严重影响系统稳定性和性能。

发现热 Key

  1. 按业务场景预估热点 key: 根据业务特点预估一些热门key,如促销商品、秒杀商品等。这种方法简单但依赖于人工经验,无法发现意外的热点。

  2. 客户端收集: 封装代码统计Redis的所有访问命令,对命令进行统计分析。简单方便但需要代码修改。

  3. 代理层收集: 在访问Redis之前添加访问代理层,代理层收敛请求并进行统计。无代码侵入但架构复杂。

  4. Redis监控命令: 使用Redis提供的监控命令,如hotkeys命令,实时监控热 Key。无代码侵入但对大集群扫描较慢。

# 统计间隔0.1秒输出一次hotkeysredis-cli --hotkeys -i 0.1
root@root:~# redis-cli --hotkeys -i 0.1# Scanning the entire keyspace to find hot keys as well as# average sizes per key type.  You can use -i 0.1 to sleep 0.1 sec# per 100 SCAN commands (not usually needed).[00.00%] Hot key 'aaa' found so far with counter 1-------- summary -------Sampled 4 keys in the keyspace!hot key found with counter: 1    keyname: aaa
  1. 网络抓包分析: 抓取Redis服务器侧的包进行分析,发现流量倾斜和热 Key。无代码侵入但可能恶化现有问题。

处理热 Key

  1. 本地缓存: 在访问Redis之前加一层本地缓存,将部分热 Key 存储在本地。需要合理设计淘汰策略和热 Key 发现机制。

  2. 本机Redis备机: 将Redis备机部署在本地,充当本地缓存的角色。需要考虑一致性和维护成本。
    在这里插入图片描述

  3. 备份存储: 将热 Key 备份成多份,分布在不同实例上,分散流量。需要设计合适的备份策略。
    在这里插入图片描述
    Cluster 模式下某个 key 是存储在固定的某个实例上的,所以热 key 才如此棘手,因为所有流量都打到同一个实例上。那么有没有可能打散这些流量呢?

答案是有可能的。如果我们把热 key 备份成 N 份,例如,原 key 是 goods📱detail,那么这 N 份的 key 就分为 goods:iphone:detail:0,goods:iphone:detail:1,goods:iphone:detail:2,……,goods:iphone:detail:N-1,分散在集群的多个节点,查询的时候可以按照一定的散列规则分散去访问不同的 key 副本,规则可以选择随机散列、按用户散列等。

随机散列的示意 Java 代码如下:

int N = M * 2//M是集群里的节点数,得到备份数量//生成随机数int random = new Random().nextInt(N);//构造备份新keyString bakHotKey = hotKey + “_” + random;String data = getFromRedis(bakHotKey);if (data == null) {//查询不到缓存,从数据库查询出来放到对应的备份Keydata = getFromDB();saveToRedis(bakHotKey, expireTime);}

注:以上代码中 N 取了节点数 2 倍的原因是,由于 Redis 的散列存储算法是内置固定的,我们无法 100% 保证不同的备份 key 肯定落在不同副本上,所以 N 的取值上取了一点冗余。

  1. 读写分离: 开启读写分离,利用备节点扛住读流量。适用于热 Key 主要是读场景的情况。

  2. 京东hotkeys框架: 京东开源的hotkeys框架可用于实时侦测热 Key,并自动推送到本地缓存。适用于电商等场景的热 Key 发现和处理。
    在这里插入图片描述


6座大山之_Big Key

大 Key在Redis中是一项棘手的问题,因为它会导致多种性能和稳定性问题,包括内存倾斜、网络阻塞和阻塞查询。以下是关于大 Key的问题以及解决方案的详细说明:

问题:

  1. 内存倾斜: 大 Key存在于集群的某个实例上,导致该实例的内存占用和CPU负载过大,成为系统的隐患点。

  2. 网络阻塞: 大 Key的操作可能导致网络I/O成为瓶颈,尤其是涉及到hgetall、get、hmget等操作时。

  3. 阻塞查询: Redis内部处理大 Key时是单线程处理的,大 Key的操作耗时,会阻塞其他语句的执行,影响整个集群的服务能力。

可能发生的场景:

  1. 部分列表类存储: 例如,存储粉丝列表或商品列表的大型数据结构。

  2. 统计类的集合: 需要按天统计某类用户的集合,随着用户数量的增加,该Key的大小也会增加。

  3. 大数据缓存类: Redis作为数据库缓存,若缓存的数据量过大,例如将几万行的数据存储为一个JSON,就会产生大Key。

发现大 Key的方法:

  1. 分析RDB文件: 对RDB文件进行分析,找出其中的大Key。

  2. scan+debug: 结合scan命令和debug object命令,筛选出当前实例所有Key的大小,找到大Key。

  3. redis-cli --bigkeys: 使用redis-cli的bigkeys命令,找到实例中各种数据类型的最大Key。

删除大 Key的方法:

  1. Lazy Free: Redis 4.0提供了异步延时释放Key内存的功能,将释放操作放在后台线程处理,减少对主线程的阻塞。

  2. UNLINK命令: Redis 4.0.0引入了UNLINK命令,其时间复杂度是O(1),能够快速删除大Key。

  3. 集合scan命令: 对于低版本的Redis,可以使用集合配套的scan命令分批删除大Key的元素。

避免产生大 Key的方法:

拆分: 在设计阶段,针对可能成为大 Key的数据结构,采取拆分策略,将大数据集拆分成多个子集,避免单个Key过大。

在这里插入图片描述

例如一个粉丝列表 list。针对一些大 V 博主,我们可以按照粉丝的 userid 决定其存在于哪个 list,拆分成 list0、list1、list2、list3 等。针对一个大的 hash,我们也可以将不同的 field 分散成多个子 hash,并且要先计算在哪个子 hash 中进行获取.

解决大 Key问题需要综合考虑系统设计、数据存储和操作方式等多个方面,以确保系统的性能和稳定性。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/285958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8s的Pod出现Init:ImagePullBackOff问题的解决,(以calico网络插件为例)

问题描述: 对于这类问题的解决思路应该都差不多,本文以calico插件安装为例,发现有个Pod的镜像没有pull成功 第一步:查看这个pod的描述信息 kubectl describe pod calico-node-t9rql -n kube-system从上图发现是docker拉取"…

H3C技术大全复现之高级路由交换技术 1

华子目录 VLAN 基本技术VLANIEEE 802.1Q交换机端口类型MVRP协议实验测试 VLAN扩展技术Super VLAN产生背景Super vlan(相当于vlanif接口,也属于虚拟接口,可以充当网关)Sub vlan(普通vlan)关于代理ARP普通代理…

了解和使用无操作系统和平台驱动程序

快速发展的技术需要软件支持(固件驱动程序和示例代码)来简化设计过程。本文介绍了如何使用 no-OS(无操作系统)驱动程序和平台驱动程序来构建具有 Analog Devices 模数转换器和数模转换器的应用固件,这些转换器在以下方…

Docker之docker compose!!!!

一、概述 是 Docker 官方提供的一款开源工具,主要用于简化在单个主机上定义和运行多容器 Docker 应用的过程。它的核心作用是容器编排,使得开发者能够在一个统一的环境中以声明式的方式管理多容器应用的服务及其依赖关系。 也就是说Docker Compose是一个…

docker安装WireGuard服务

启动 WireGuard 如下异常 则是linux内核需要升级 $ wg-quick down wg0 $ wg-quick up wg0 Error: WireGuard exited with the error: Cannot find device "wg0" This usually means that your hosts kernel does not support WireGuard!at /app/lib/WireGuard.js:65…

unicloud 云函数 介绍及使用

普通云函数 callFunction方式云函数,也称之为普通云函数。 uni-app的前端代码,不再执行uni.request联网,而是通过uniCloud.callFunction调用云函数。 callFunction方式避免了服务器提供域名,不暴露固定ip,减少被攻击…

机器学习(一)

经典定义: 利用经验改善系统自身的性能。 经典的机器学习过程: 基本术语: 数据集:训练集、测试集 示例、样例、样本 属性、特征:属性值 属性空间、样本空间、输入空间 特征向量 标记空间、输出空间 归纳偏好(偏置): 任何一个有效的机器学习算法必有其偏好 学习算法的…

数据库系统概论-练手题集合【期末复习|考研复习】

前言 总结整理不易,希望大家点赞收藏。 给大家整理了一下数据库系统概论中的练手题,以供大家期末复习和考研复习的时候使用。 数据库系统概论系列文章传送门: 第一章 绪论 第二/三章 关系数据库和标准语言SQL 第四/五章 数据库安全性和完整性…

【Flutter学习笔记】10.3 组合实例:TurnBox

参考资料:《Flutter实战第二版》 10.3 组合实例:TurnBox 这里尝试实现一个更为复杂的例子,其能够旋转子组件。Flutter中的RotatedBox可以旋转子组件,但是它有两个缺点: 一是只能将其子节点以90度的倍数旋转二是当旋转…

Web前端全栈HTML5通向大神之路

本套课程共三大阶段,六大部分,是WEB前端、混合开发与全栈开发必须要掌握的技能,从基础到实践,是从编程小白成长为全栈大神的最佳教程! 链接:https://pan.baidu.com/s/1S_8DCORz0N2ZCdtJg0gHsw?pwdtjyv 提取…

4G/5G视频记录仪_联发科MTK6765平台智能记录仪方案

视频记录仪主板采用了联发科MT6765芯片,该芯片采用12nm FinFET制程工艺,8*Cortex-A53架构,搭载安卓11.0/13.0系统,主频最高达2.3GHz,待机功耗可低至5ma,并具有快速数据传输能力。配备了2.4英寸高清触摸显示…

C语言---------strlen的使用和模拟实现

字符串是以‘\0’作为结束标志&#xff0c;strlen函数的返回值是‘\0’前面的字符串的个数&#xff08;不包括‘\0’&#xff09; 注意 1&#xff0c;参数指向的字符串必须以‘\0’结束 2&#xff0c;函数的返回值必须以size_t,是无符号的 使用代码 ​ #include<stdio.…

图论基础|417. 太平洋大西洋水流问题、827.最大人工岛、127. 单词接龙

目录 417. 太平洋大西洋水流问题 827.最大人工岛 127. 单词接龙 417. 太平洋大西洋水流问题 题目链接(opens new window) 有一个 m n 的矩形岛屿&#xff0c;与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界&#xff0c;而 “大西洋” 处于大陆的右边界…

数据分析POWER BI之power query

1.导入数据 ctrla全选--数据--获取数据--其他来源--来自表格/区域 导入数据&#xff0c;进入编辑模式 2.整理与清除 清除&#xff1a;删除所选列的非打印字符 转换--格式--清除 修整&#xff1a;删除前面和后面的空格 转换---格式---修整&#xff08;修整后前面后面的空格没有了…

程序汪若依微服务华为云Linux部署保姆教程

若依官方有3个版本&#xff0c;程序汪以前已经出了对应的安装部署视频教程 单应用版本 前后分离版本 微服务版本 本视频是若依微服务版本&#xff0c;如果基础的环境软件都不会安装建议看下程序汪的单应用和前后端分离版本教程&#xff0c; 欢迎点击进入 &#xff08;单应…

【VALL-E-02】核心原理

本文系个人知乎专栏文章迁移 VALL-E 网络是GPT-SOVITS很重要的参考 知乎专栏地址&#xff1a; 语音生成专栏 相关文章链接&#xff1a; 【VALL-E-01】环境搭建 【VALL-E-02】核心原理 【参考】 【1】Neural Codec Language Models are Zero-Shot Text to Speech Synthesiz…

部署单节点k8s并允许master节点调度pod

安装k8s 需要注意的是k8s1.24 已经弃用dockershim&#xff0c;现在使用docker需要cri-docker插件作为垫片&#xff0c;对接k8s的CRI。 硬件环境&#xff1a; 2c2g 主机环境&#xff1a; CentOS Linux release 7.9.2009 (Core) IP地址&#xff1a; 192.168.44.161 一、 主机配…

C++ 子序列

目录 最长递增子序列 摆动序列 最长递增子序列的个数 最长数对链 最长定差子序列 最长的斐波那契子序列的长度 最长等差数列 等差数列划分 II - 子序列 最长递增子序列 300. 最长递增子序列 子数组是连续的&#xff0c;子序列可以不连续&#xff0c;那么就要去[0, i - 1]…

GuLi商城-商品服务-API-三级分类-查询-树形展示三级分类数据

1、网关服务配置路由 2、商品服务 3、启动本地nacos&#xff0c;打开nacos地址看nacos服务列表 4、编写VUE <template> <el-tree :data"menus" :props"defaultProps" node-click"handleNodeClick"></el-tree> </template…