视觉轮速滤波融合1讲:理论推导

视觉轮速滤波融合理论推导

文章目录

  • 视觉轮速滤波融合理论推导
  • 1 坐标系
  • 2 轮速计
    • 2.1 运动学模型
    • 2.2 外参
  • 3 状态和协方差矩阵
    • 3.1 状态
    • 3.2 协方差矩阵
  • 4 Wheel Propagation
    • 4.1 连续运动学
    • 4.2 离散积分
      • 4.2.1 状态均值递推
      • 4.2.2 协方差递推
  • 5 Visual update
    • 5.1 视觉残差与雅可比
    • 5.2 左零空间投影
    • 5.3 降低计算量
    • 5.4 边缘化
  • 6 平面约束Update
    • 6.1 平面约束本质
    • 6.2 如何进行平面约束

1 坐标系

在这里插入图片描述

2 轮速计

2.1 运动学模型

  这里介绍下轮速计的一个运动学模型,以阿克曼为例。如果一个小车,它沿着直线运动,那么它的左右轮速相等。如果不相等,意味着发生了旋转:
V X = V L + V R 2 , ω = V X / R V_{X}=\frac{V_{L}+V_{R}}{2},ω = V_{X}/R VX=2VL+VRω=VX/R

在这里插入图片描述

  左右轮速的速度我们是可以计算得到的,但是半径R一开始肯定未知,所以利用下面公式计算,其中W是轮距,H是轴距
V X = V L + V R 2 , ω = V R − V L W V_{X}=\frac{V_{L}+V_{R}}{2},ω =\frac{V_{R}-V_{L}}{W} VX=2VL+VR,ω=WVRVL
在这里插入图片描述

  有了角速度和线速度,就可以计算出旋转半径R,然后利用轴距、轮距、R来计算左右前轮的偏角(θ=ωt
A n g l e L = tan ⁡ − 1 ( H R − 0.5 W ) A n g l e R = tan ⁡ − 1 ( H R + 0.5 W ) \begin{aligned}Angle_L&=\tan^{-1}\big(\frac{H}{R-0.5W}\big)\\\\Angle_R&=\tan^{-1}\big(\frac{H}{R+0.5W}\big)\end{aligned} AngleLAngleR=tan1(R0.5WH)=tan1(R+0.5WH)

2.2 外参

  与相机的姿态变换外参
O C R 与平移  C p O _O^CR\text{ 与平移 }^Cp_O OCR 与平移 CpO

3 状态和协方差矩阵

3.1 状态

  类似于MSCKF,状态由两部分组成,一个是Odometry的位姿:
O G T = { O G R , G p O } ∈ SE 3 _O^GT=\{_O^GR,^Gp_O\}\in\text{SE}3 OGT={OGR,GpO}SE3
  另一个是相机位姿(多帧):
C G T = { C G R , G p C } ∈ SE 3 _C^GT=\{_C^GR,^Gp_C\}\in\text{SE}3 CGT={CGR,GpC}SE3
  滑窗内状态变量即当前时刻Odometry位姿+N帧的相机位姿
KaTeX parse error: Got group of unknown type: 'internal'

3.2 协方差矩阵

  里程计状态(姿态)协方差矩阵维度6*6,相机状态协方差矩阵维度6N*6N
P k : k = [ P O O k : k P O C k : k P O C k : k T P C C k : k ] P_{k:k}=\begin{bmatrix}P_{OO_{k:k}}&P_{OC_{k:k}}\\P_{OC_{k:k}}^T&P_{CC_{k:k}}\end{bmatrix} Pk:k=[POOk:kPOCk:kTPOCk:kPCCk:k]

1 卡尔曼预测阶段更新里程计状态协方差,同时更新里程计与相机交叉部分状态协方差

其中, P O O k + 1 ∣ k = Φ P O O k : k Φ T + F Q F T \mathbf{P}_{OO_{k+1|k}} = \Phi P_{OO_{k:k}}\Phi^T+FQF^T POOk+1∣k=ΦPOOk:kΦT+FQFT
P k + 1 ∣ k = ( P O O k + 1 ∣ k Φ k P O C k ∣ k P O C k ∣ k ⊤ Φ k ⊤ P C C k ∣ k ) \left.\mathbf{P}_{k+1|k}=\left(\begin{matrix}\mathbf{P}_{OO_{k+1|k}}&\mathbf{\Phi}_{k}\mathbf{P}_{OC_{k|k}}\\\mathbf{P}_{OC_{k|k}}^\top\mathbf{\Phi}_{k}^\top&\mathbf{P}_{CC_{k|k}}\end{matrix}\right.\right) Pk+1∣k=(POOk+1∣kPOCkkΦkΦkPOCkkPCCkk)

2 状态增广:当新的frame到来,利用里程计位姿,通过外参预测相机位姿,更新 P k : k P_{k:k} Pk:k, 整体维度(6+6N + 6)*(6+6N + 6)

C G R = O G R C O R G p C = G p O + O G R O p C \begin{array}{c}_C^GR={}_O^GR{}_C^OR\\^Gp_C={}^Gp_O+{}_O^GR{}^Op_C\end{array} CGR=OGRCORGpC=GpO+OGROpC

P ( 6 + 6 ( N + 1 ) ) × ( 6 + 6 ( N + 1 ) ) = [ I 6 + 6 N J 6 × ( 6 + 6 N ) ] P ( 6 + 6 N ) × ( 6 + 6 N ) [ I 6 + 6 N J 6 × ( 6 + 6 N ) ] T = [ P P J T J P J P J T ] \begin{gathered} P^{(6+6(N+1))\times(6+6(N+1))} \left.=\left[\begin{array}{c}I_{6+6N}\\J_{6\times(6+6N)}\end{array}\right.\right]P^{(6+6N)\times(6+6N)}\left[\begin{array}{c}I_{6+6N}\\J_{6\times(6+6N)}\end{array}\right]^T \\ \left.=\left[\begin{array}{cc}P&PJ^T\\JP&JPJ^T\end{array}\right.\right] \end{gathered} P(6+6(N+1))×(6+6(N+1))=[I6+6NJ6×(6+6N)]P(6+6N)×(6+6N)[I6+6NJ6×(6+6N)]T=[PJPPJTJPJT]

  其中,雅可比是相机姿态对状态扰动量的雅可比,因为odometry预测相机姿态,所以和之前N帧相机无关,导数为0!
J = [ C O R T 0 3 × 3 0 6 N × 6 N − O G R [ O p C ] × I 0 6 N × 6 N ] J=\begin{bmatrix}^O_CR^T&0_{3\times3}&0_{6N\times6N}\\-_O^GR{\left[^Op_C\right]}_\times&I&0_{6N\times6N}\end{bmatrix} J=[CORTOGR[OpC]×03×3I06N×6N06N×6N]

重点补充下第一列的雅可比求解推导(要搞清楚是左/右扰动)

1 平移 G p C ^Gp_C GpC O G R _O^GR OGR的雅可比,注意是右扰动!若按左扰动求导,结果应该是 − [ O G R O p C ] -{\left[_O^GR^Op_C\right]} [OGROpC]

推导过程如下

在这里插入图片描述

在这里插入图片描述

4 Wheel Propagation

论文Localization for Ground Robots: On Manifold Representation, Integration

4.1 连续运动学

  VIO里面使用IMU去做预测这部分,这里是利用轮速计去做propagation。

O G R ˙ = O G R [ O ω O ] × G p O ˙ = G v O = O G R O v O \begin{aligned}\dot{_O^GR}&= ^G_OR[^O\omega_O]_\times\\^G\dot{p_O}&={}^Gv_O={}_O^GR^Ov_O\end{aligned} OGR˙GpO˙=OGR[OωO]×=GvO=OGROvO

  其中 O ω O ^O\omega_O OωO是轮速坐标系下的顺时角速度,等同IMU测量的角速度。但是因为轮速计只有2D方面的旋转,一般只有偏航角,即只能测到绕z轴的角速度。下面式子中b是轮距, k l , k r k_l,k_r kl,kr分别是左右轮速系数。
O ω O = [ 0 0 k r ⋅ v r − k l ⋅ v l b ] \left.^O\omega_O=\left[\begin{array}{c}0\\0\\\frac{k_r\cdot v_r-k_l\cdot v_l}b\end{array}\right.\right] OωO= 00bkrvrklvl
   O v O ^Ov_O OvO是瞬时速度,轮速本身只能测量沿x轴方向的速度(在世界系并不是)。
O v O = [ k l ⋅ v l + k r ⋅ v r 2 0 0 ] \left.^Ov_O=\left[\begin{array}{c}\frac{k_l\cdot v_l+k_r\cdot v_r}{2}\\0\\0\end{array}\right.\right] OvO= 2klvl+krvr00

4.2 离散积分

4.2.1 状态均值递推

  对上面得到的常微分方程进行离散化,使用欧拉积分,认为dt时间内变量未改变,根据定积分公式,以平移p为例,可以得到下式:

常见的一种运动学积分公式(欧拉积分)

O G R k + 1 = O G R k E x p ( O ω O Δ t ) ⏟ Δ R G p O k + 1 = G p O k + O G R k O v O Δ t ⏟ Δ p \begin{gathered} _{O}^{G}R_{k+1} ={}_O^GR_k\underbrace{\mathrm{Exp}({}^O\omega_O\Delta t)}_{\Delta R} \\ ^Gp_{O_{k+1}} ={}^Gp_{Ok}+{}_O^GR_k\underbrace{^Ov_O\Delta t}_{\Delta p} \end{gathered} OGRk+1=OGRkΔR Exp(OωOΔt)GpOk+1=GpOk+OGRkΔp OvOΔt

4.2.2 协方差递推

  对于协方差的Propgation,我们先求雅克比。

这里先引出论文中的公式,貌似顺序写反了,δp在前,δθ在后,更多详细推导可以参考论文

在这里插入图片描述

我们这里先不管后面那个m,因为这个递推公式是连续的,所以我们把它离散化。在MSCKF中,利用泰勒展开去近似Fc得到状态转移矩阵Φ,简单起见,用一阶泰勒展开δx' = (I + Fc*dt)δx + G,Q是噪声矩阵。下图展示了状态转移矩阵的推导。

在这里插入图片描述
Φ = [ Exp ⁡ ( O ω O Δ t ) T 0 − O G R k [ O v O Δ t ] × I ] \Phi=\begin{bmatrix}\operatorname{Exp}(^O\omega_O\Delta t)^T&0\\-_O^GR_k[^Ov_O\Delta t]_\times&I\end{bmatrix} Φ=[Exp(OωOΔt)TOGRk[OvOΔt]×0I]

G ′ = [ I 0 0 O G R k ] \left.G'=\left[\begin{array}{cc}I&0\\0&{}_{O}^{G}R_{k}\end{array}\right.\right] G=[I00OGRk]

卡尔曼预测阶段协方差更新

P O O k + 1 ∣ k = Φ P O O k : k Φ T + G ′ Q G ′ T \mathbf{P}_{OO_{k+1|k}} = \Phi P_{OO_{k:k}}\Phi^T+G'QG'^T POOk+1∣k=ΦPOOk:kΦT+GQGT

5 Visual update

5.1 视觉残差与雅可比

  MSCKF的边缘化操作没有把特征点放到状态向量里面,降低了计算量

  当特征点丢失的时候,才拿来进行更新。特征点丢失有两种情况:

  1. 一种是跟踪丢失,也就是当前帧跟踪不到的那些特征点;
  2. 另一种是边缘化的时候,也就是把最后一帧滑出窗口的时候,把在这一帧里面新建的特征点都丢弃,也就是都拿来做更新。

这里更详细的推导,可以参考之前MSCKF的博客

r i j = z i j − z ^ i j = H C i j x ~ C i + H f i j G p ~ j + n i j \mathbf{r}_i^j=\mathbf{z}_i^j-\hat{\mathbf{z}}_i^j=\mathbf{H}_{C_i}^j\tilde{\mathbf{x}}_{C_i}+\mathbf{H}_{f_i}^j{}^G\tilde{\mathbf{p}}_j+\mathbf{n}_i^j rij=zijz^ij=HCijx~Ci+HfijGp~j+nij

5.2 左零空间投影

左零空间投影—QR分解

r 0 ( 2 M − 3 M L ) × 1 = A T r 2 M × 1 ≅ A T H X 2 M × ( 15 + 6 N ) ⏟ H 0 X ~ ( 15 + 6 N ) × 1 + A T n 2 M × 1 ⏟ n 0 = H 0 ( 2 M − 3 ) × ( 15 + 6 N ) X ~ ( 15 + 6 N ) × 1 + n 0 ( 2 M − 3 ) × 1 \begin{aligned}r_0^{(2M-3M_L)\times1}&=\mathrm{A}^Tr^{2M\times1}\cong\underbrace{\mathrm{A}^TH_X^{2M\times(15+6N)}}_{H_0}\tilde{X}^{(15+6N)\times1}+\underbrace{\mathrm{A}^Tn^{2M\times1}}_{n_0}\\&={H_0}^{(2M-3)\times(15+6N)}\tilde{X}^{(15+6N)\times1}+{n_0}^{(2M-3)\times1}\end{aligned} r0(2M3ML)×1=ATr2M×1H0 ATHX2M×(15+6N)X~(15+6N)×1+n0 ATn2M×1=H0(2M3)×(15+6N)X~(15+6N)×1+n0(2M3)×1

5.3 降低计算量

QR分解降低计算量

  投影完之后,我们就可以得到新的残差和相应的雅可比矩阵 H 0 H_{0} H0。但是 H 0 H_{0} H0矩阵通常维度很大,为了降低计算量,对 H 0 H_{0} H0进行QR分解:

  QR分解会得到一个正交矩阵和一个上三角矩阵!正交矩阵的转置和其本身的乘积是单位矩阵,且该矩阵的所有列向量彼此正交(内积为0)
H 0 ( 2 M − 3 ) × ( 15 + 6 N ) = [ Q 1 Q 2 ] [ T H 0 ] {H_0}^{(2M-3)\times(15+6N)}=[Q_1\quad Q_2]\begin{bmatrix}T_H\\0\end{bmatrix} H0(2M3)×(15+6N)=[Q1Q2][TH0]
  对上面新的残差左边乘以 [ Q 1 T Q 2 T ] \left.\left[\begin{array}{cc}\mathbf{Q}_1^T\\\mathbf{Q}_2^T\end{array}\right.\right] [Q1TQ2T],得到
[ Q 1 T r 0 Q 2 T r 0 ] = [ T H 0 ] X ~ + [ Q 1 T n 0 Q 2 T n 0 ] \begin{bmatrix}Q_1^Tr_0\\Q_2^Tr_0\end{bmatrix}=\begin{bmatrix}T_H\\0\end{bmatrix}\tilde{X}+\begin{bmatrix}Q_1^Tn_0\\Q_2^Tn_0\end{bmatrix} [Q1Tr0Q2Tr0]=[TH0]X~+[Q1Tn0Q2Tn0]

5.4 边缘化

  边缘化,就是说如何删除滑窗里的状态,这里使用最简单的策略,把最老的一帧去掉,删掉协方差矩阵中对应块,去掉的这帧里的所有特征点都被拿来做更新。

6 平面约束Update

参考论文:VINS on wheels," 2017 (ICRA)

  当车辆在在平面上运动时,在更新的时候,我们引入一个平面约束.

6.1 平面约束本质

为了解释这个问题,首先解释下旋转矩阵的含义,更多请参考之前博客

  刚体坐标系B相对于世界坐标系A的的姿态—旋转矩阵。分别把B下的三个轴分别投影到世界坐标系下的三个轴,下面矩阵给出了对应的投影分量。
B A R = [ ∣ ∣ ∣ A X ^ B A Y ^ B A Z ^ B ∣ ∣ ∣ ] = [ X ^ B ⋅ X ^ A Y ^ B ⋅ X ^ A Z ^ B ⋅ X ^ A X ^ B ⋅ Y ^ A Y ^ B ⋅ Y ^ A Z ^ B ⋅ Y ^ A X ^ B ⋅ Z ^ A Y ^ B ⋅ Z ^ A Z ^ B ⋅ Z ^ A ] { }^A _B{R}=\left[\begin{array}{ccc} \mid & \mid & \mid \\ { }^A \widehat{X}_B & { }^A \widehat{Y}_B & { }^A \hat{Z}_B \\ \mid & \mid & \mid \end{array}\right]=\left[\begin{array}{ccc} \hat{X}_B \cdot \hat{X}_A & \hat{Y}_B \cdot \hat{X}_A & \hat{Z}_B \cdot \hat{X}_A \\ \hat{X}_B \cdot \hat{Y}_A & \hat{Y}_B \cdot \hat{Y}_A & \hat{Z}_B \cdot \hat{Y}_A \\ \hat{X}_B \cdot \hat{Z}_A & \hat{Y}_B \cdot \hat{Z}_A & \hat{Z}_B \cdot \hat{Z}_A \end{array}\right] BAR= AX BAY BAZ^B = X^BX^AX^BY^AX^BZ^AY^BX^AY^BY^AY^BZ^AZ^BX^AZ^BY^AZ^BZ^A
  也就是说,矩阵 B A R ^A_BR BAR的第3列就是坐标系B的z轴在A系下的投影。对于 O G R ^G_OR OGR来讲,前面定义世界系与初始轮速坐标系重合,轮速只有绕z轴的旋转,所以坐标系{G}和坐标系{O}的z轴是平行的。平面约束的本质就是让 O G R ^G_OR OGR的右上角2*1向量为0。

6.2 如何进行平面约束

  平面约束是Odometry的坐标的X-O-Y面与一个平面重合。我们这里设定平面 {Π} 为初始时刻Odometry坐标系的X-O-Y平面,即世界系。

0 2 × 1 = Λ G π R O G R ⏟ O π R e 3 = Λ O G R e 3 0_{2\times1}=\Lambda\underbrace{_G^\pi R_{O}^GR}_{_{O}^{\pi}R}e_3 = \Lambda^G_ORe_3 02×1=ΛOπR GπROGRe3=ΛOGRe3

  其中, Λ \Lambda Λ是为了将一个三维列向量取出前面2*1向量, e 3 e_3 e3就是Odometry坐标系z下轴单位向量,投影到世界系后,取出前面二维,应该是一个0向量!

Λ = [ 1 0 0 0 1 0 ] , e 3 = [ 0 0 1 ] \Lambda=\begin{bmatrix}1&0&0\\0&1&0\end{bmatrix},e_3=\begin{bmatrix}0\\0\\1\end{bmatrix} Λ=[100100],e3= 001

本文参考博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/287259.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】【Leetcode】70. 爬楼梯

文章目录 题目思路:简单递归 > 动态规划 题目 链接: link 思路:简单递归 > 动态规划 这题类似于斐波那契数列的算法,结果其实就是到达前一步和到达前两步的方法之和,一直递归到n1和n2时就行了,但是这种算法有个…

今天聊聊Docker

在数字化时代,软件应用的开发和部署变得越来越复杂。环境配置、依赖管理、版本控制等问题给开发者带来了不小的挑战。而Docker作为一种容器化技术,正以其独特的优势成为解决这些问题的利器。本文将介绍Docker的基本概念、优势以及应用场景,帮…

C++基础之继承续(十六)

一.基类与派生类之间的转换 可以把派生类赋值给基类可以把基类引用绑定派生类对象可以把基类指针指向派生类对象 #include <iostream>using std::cin; using std::cout; using std::endl;//基类与派生类相互转化 class Base { private:int _x; public:Base(int x0):_x(…

Amuse .NET application for stable diffusion

Amuse github地址&#xff1a;https://github.com/tianleiwu/Amuse .NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system Welcome to Amuse! Amuse is a profes…

CAPL - 如何实现弹窗提示和弹窗操作(续)

目录 函数介绍 openPanel closePanel 代码示例 1、简单的打开关闭panel面板

自动驾驶-如何进行多传感器的融合

自动驾驶-如何进行多传感器的融合 附赠自动驾驶学习资料和量产经验&#xff1a;链接 引言 自动驾驶中主要使用的感知传感器是摄像头和激光雷达&#xff0c;这两种模态的数据都可以进行目标检测和语义分割并用于自动驾驶中&#xff0c;但是如果只使用单一的传感器进行上述工作…

文献速递:文献速递:基于SAM的医学图像分割--SAM-Med3D

Title 题目 SAM-Med3D 01 文献速递介绍 医学图像分析已成为现代医疗保健不可或缺的基石&#xff0c;辅助诊断、治疗计划和进一步的医学研究]。在这一领域中最重要的挑战之一是精确分割体积医学图像。尽管众多方法在一系列目标上展现了值得称赞的有效性&#xff0c;但现有的…

C/C++ 语言中的 ​if...else if...else 语句

C/C 语言中的 ​if...else if...else 语句 1. if statement2. if...else statement3. if...else if...else statementReferences 1. if statement The syntax of the if statement is: if (condition) {// body of if statement }The code inside { } is the body of the if …

javaScript——BFS结合队列求迷宫最短路径

这里推荐先去看下B站这个老师讲的BFS迷宫问题&#xff0c;只用看前五分钟就能懂用BFS队列实现的原理。[POJ] 3984 迷宫问题 BFS_哔哩哔哩_bilibili 问题描述&#xff1a;由m*n的矩阵构成了一个迷宫&#xff0c; 矩阵中为1的元素表示障碍物&#xff0c;不能走&#xff0c;为0表示…

AcWing 830. 单调栈

解题思路 对于将要入栈的元素来说&#xff0c;在对栈进行更新后&#xff08;即弹出了所有比自己大的元素&#xff09;&#xff0c;此时栈顶元素就是数组中左侧第一个比自己小的元素&#xff1b; 对于将要入栈的元素来说&#xff0c;在对栈进行更新后&#xff08;即弹出了所有比…

【干货】无源滤波器设计讲解,工作原理+设计步骤

今天给大家分享的是&#xff1a;无源模拟滤波器针对很多入门小白不懂滤波器设计&#xff0c;一些老工程师上班很多年有的也不懂得总结知识点&#xff0c;以及想学习不知道怎么系统学习的这一类人群&#xff0c;前方知识点来袭&#xff0c;请君放心食用~ 在信号处理领域&#x…

Git基础(25):Cherry Pick合并指定commit id的提交

文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中&#xff0c;我们会存在多个分支开发的情况&#xff0c;比如dev&#xff0c;test, prod分支&#xff0c;dev分支在开发新功能&#xff0c;prod作为生产分支已发布。如果某个时候&#xff0c;我们…

基于stm32与TJC3224T124_011串口屏的PID调参器(附完整工程)

电赛在即&#xff0c;每次比赛调PID都是一件比较繁琐的事。每次都要在程序中改完再烧录到板子上&#xff0c;特别耗时。正好最近发现实验室的一块串口屏比较好玩。 于是就做了这个调PID的东西。它可以通过串口直接修改PID的值&#xff0c;从而达到快速调PID的目的。下面我将完整…

论文阅读---VITC----Early Convolutions Help Transformers See Better

论文题目&#xff1a;Early Convolutions Help Transformers See Better 早期的卷积网络帮助transformers性能提升 vit 存在不合格的可优化性&#xff0c;它们对优化器的选择很敏感。相反现代卷积神经网络更容易优化。 vit对优化器的选择[40](AdamW [27] vs. SGD)&#xff0…

CTF题型 nodejs(1) 命令执行绕过典型例题

CTF题型 nodejs(1) 命令执行绕过 文章目录 CTF题型 nodejs(1) 命令执行绕过一.nodejs中的命令执行二.nodejs中的命令绕过1.编码绕过2.拼接绕过3.模板字符串4.Obejct.keys5.反射6.过滤中括号的情况典型例题1.[GFCTF 2021]ez_calc2.[西湖论剑 2022]Node Magical Login 一.nodejs中…

力扣Lc21--- 389. 找不同(java版)-2024年3月26日

1.题目描述 2.知识点 &#xff08;1&#xff09;在这段代码中&#xff1a; // 统计字符串s中每个字符的出现次数for (int i 0; i < s.length(); i) {count[s.charAt(i) - a];}对于字符串s “abcd”&#xff1a; 当 i 0&#xff0c;s.charAt(i) ‘a’&#xff0c;ASCII…

yolov9目标检测可视化图形界面GUI源码

该系统是由微智启软件工作室基于yolov9pyside6开发的目标检测可视化界面系统 运行环境&#xff1a; window python3.8 安装依赖后&#xff0c;运行源码目录下的wzq.py启动 程序提供了ui源文件&#xff0c;可以拖动到Qt编辑器修改样式&#xff0c;然后通过pyside6把ui转成python…

JMeter 如何并发执行 Python 脚本

要在JMeter中并发执行Python脚本&#xff0c;可以使用Jython脚本或通过调用外部Python脚本的方式实现。 使用Jython脚本并发执行Python脚本的步骤&#xff1a; 1、创建一个线程组&#xff1a;在JMeter界面中&#xff0c;右键点击测试计划&#xff0c;选择 “添加” -> “线…

词根词缀基础

一&#xff0e;词根词缀方法&#xff1a; 1. 类似中文的偏旁部首&#xff08;比如“休”单人旁木→一个人靠木头上休息&#xff09; 2. 把单词拆分后&#xff0c;每一个部分都有它自己的意思&#xff0c;拼凑在一起就构成了这个单词的意思 3. 一个规律&#xff0c;适用大部分…

题。。。。

O - 胜利大逃亡(续) 题目分析 bfs状态压缩&#xff08;在bfs的基础上&#xff0c;存储持有不同钥匙时&#xff0c;此点位是否走过的情况&#xff09;&#xff1b; -----状态压缩使用二进制实现&#xff0c;同时通过位运算修改是否转移至另一状态&#xff08;详情见代码及注释…