LeetCode 142.环形链表II(数学公式推导)

给定一个链表的头节点  head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示:

  • 链表中节点的数目范围在范围 [0, 104] 内
  • -105 <= Node.val <= 105
  • pos 的值为 -1 或者链表中的一个有效索引

进阶:你是否可以使用 O(1) 空间解决此题?

解题思路:

主要得出结论:

1.slow指针和fast指针都向后移动,当slow指针和fast指针相遇时,表示链表中有环。

2.当相遇时,定义index1指针指向头结点,index2结点指向相遇时的结点,index1和index2同时向后移动,当index1和index2指针相遇时,表示找了环形入口的起点。

动画如下:

142.环形链表II(求入口)

推导过程如下:

(From:代码随想录)

这道题目,不仅考察对链表的操作,而且还需要一些数学运算。

主要考察两知识点:

  • 判断链表是否环
  • 如果有环,如何找到这个环的入口

#判断链表是否有环

可以使用快慢指针法,分别定义 fast 和 slow 指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。

为什么fast 走两个节点,slow走一个节点,有环的话,一定会在环内相遇呢,而不是永远的错开呢

首先第一点:fast指针一定先进入环中,如果fast指针和slow指针相遇的话,一定是在环中相遇,这是毋庸置疑的。

那么来看一下,为什么fast指针和slow指针一定会相遇呢?

可以画一个环,然后让 fast指针在任意一个节点开始追赶slow指针。

会发现最终都是这种情况, 如下图:

142环形链表1

fast和slow各自再走一步, fast和slow就相遇了

这是因为fast是走两步,slow是走一步,其实相对于slow来说,fast是一个节点一个节点的靠近slow的,所以fast一定可以和slow重合。

动画如下:

141.环形链表

#如果有环,如何找到这个环的入口

此时已经可以判断链表是否有环了,那么接下来要找这个环的入口了。

假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z。 如图所示:

那么相遇时: slow指针走过的节点数为: x + y, fast指针走过的节点数:x + y + n (y + z),n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。

因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:

(x + y) * 2 = x + y + n (y + z)

两边消掉一个(x+y): x + y = n (y + z)

因为要找环形的入口,那么要求的是x,因为x表示 头结点到 环形入口节点的的距离。

所以要求x ,将x单独放在左面:x = n (y + z) - y ,

再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z 注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。

这个公式说明什么呢?

先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。

当 n为1的时候,公式就化解为 x = z

这就意味着,从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是 环形入口的节点

也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。

让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。

动画如下:

142.环形链表II(求入口)

那么 n如果大于1是什么情况呢,就是fast指针在环形转n圈之后才遇到 slow指针。

其实这种情况和n为1的时候 效果是一样的,一样可以通过这个方法找到 环形的入口节点,只不过,index1 指针在环里 多转了(n-1)圈,然后再遇到index2,相遇点依然是环形的入口节点。

代码如下:

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode(int x) : val(x), next(NULL) {}* };*/
class Solution {
public:ListNode *detectCycle(ListNode *head) {ListNode* fast = head;ListNode* slow = head;while(fast != NULL && fast->next != NULL) {slow = slow->next;fast = fast->next->next;// 快慢指针相遇,此时从head 和 相遇点,同时查找直至相遇if (slow == fast) {ListNode* index1 = fast;ListNode* index2 = head;while (index1 != index2) {index1 = index1->next;index2 = index2->next;}return index2; // 返回环的入口}}return NULL;}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

  • 时间复杂度: O(n),快慢指针相遇前,指针走的次数小于链表长度,快慢指针相遇后,两个index指针走的次数也小于链表长度,总体为走的次数小于 2n
  • 空间复杂度: O(1)

#补充

在推理过程中,大家可能有一个疑问就是:为什么第一次在环中相遇,slow的 步数 是 x+y 而不是 x + 若干环的长度 + y 呢?

即文章链表:环找到了,那入口呢? (opens new window)中如下的地方:

142环形链表5

首先slow进环的时候,fast一定是先进环来了。

如果slow进环入口,fast也在环入口,那么把这个环展开成直线,就是如下图的样子:

142环形链表3

可以看出如果slow 和 fast同时在环入口开始走,一定会在环入口3相遇,slow走了一圈,fast走了两圈。

重点来了,slow进环的时候,fast一定是在环的任意一个位置,如图:

142环形链表4

那么fast指针走到环入口3的时候,已经走了k + n 个节点,slow相应的应该走了(k + n) / 2 个节点。

因为k是小于n的(图中可以看出),所以(k + n) / 2 一定小于n。

也就是说slow一定没有走到环入口3,而fast已经到环入口3了

这说明什么呢?

在slow开始走的那一环已经和fast相遇了

那有同学又说了,为什么fast不能跳过去呢? 在刚刚已经说过一次了,fast相对于slow是一次移动一个节点,所以不可能跳过去

好了,这次把为什么第一次在环中相遇,slow的 步数 是 x+y 而不是 x + 若干环的长度 + y ,用数学推理了一下,算是对链表:环找到了,那入口呢? (opens new window)的补充。

代码如下:

/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public ListNode detectCycle(ListNode head) {ListNode slow = head;ListNode fast = head;while(fast != null && fast.next != null) {slow = slow.next;fast = fast.next.next;if(slow == fast) {ListNode index1 = fast;ListNode index2 = head;while(index1 != index2) {index1 = index1.next;index2 = index2.next;}return index1;}}return null;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/305012.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯云4核8G服务器多少钱?4核8G能干啥?

腾讯云4核8G服务器多少钱&#xff1f;腾讯云4核8G轻量应用服务器12M带宽租用价格646元15个月&#xff0c;活动页面 txybk.com/go/txy 活动链接打开如下图所示&#xff1a; 腾讯云4核8G服务器优惠价格 这台4核8G服务器是轻量应用服务器&#xff0c;详细配置为&#xff1a;轻量4核…

如何在Flutter应用中配置ipa Guard进行混淆

在移动应用开发中&#xff0c;保护应用代码安全至关重要。Flutter 提供了简单易用的混淆工具&#xff0c;帮助开发者在构建 release 版本应用时有效保护代码。本文将介绍如何在 Flutter 应用中使用混淆&#xff0c;并提供了相关的操作步骤和注意事项。 &#x1f4dd; 摘要 本…

【每日刷题】Day10

【每日刷题】Day10 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f345; 目录 1. 环形链表的约瑟夫问题_牛客题霸_牛客网 (nowcoder.com) 2. 21. 合并两个有序链表 - 力扣&#xff08;LeetCode&#xff09; 3. 152…

Python中的错误处理 - 使用try、except、else和finally进行解释,并附带代码示例

最近&#xff0c;我的经理委派我创建一个自动报告。我设计的报告非常简单。它包括一些来自数据库的数字和一些基本的数学运算。我很兴奋最终可以向公司展示我的惊人的Python技能。 我完成并交付了产品。一切都很顺利。至少&#xff0c;直到大约两周后。我的报告由于除以零错误…

AGILEFORMER:用于医学图像分割的空间敏捷 Transformer UNET

AGILEFORMER&#xff1a;用于医学图像分割的空间敏捷 Transformer UNET 摘要IntroductionMethodDeformable Patch Embedding2.1.1 Rigid patch embedding2.1.2 Deformable patch embedding Spatially Dynamic Self-AttentionDeformable Multi-head Self-Attention (DMSA)Neighb…

[Mac]安装App后“XX已损坏,无法打开“

问题&#xff1a; “xx.app”已损坏&#xff0c;无法打开。你应该将它移到废纸篓。 解决&#xff1a; 终端输入sudo xattr -r -d com.apple.quarantine 后将Applications中对应的问题app拖入生成路径&#xff0c;然后执行。 $ sudo xattr -r -d com.apple.quarantine /Appli…

StarRocks实战——华米科技埋点分析平台建设

目录 前言 一、原有方案及其痛点 二、引入StarRocks 三、方案改造 3.1 架构设计 3.2 数据流程 3.3 性能指标 3.4 改造收益 前言 华米科技是一家基于云的健康服务提供商&#xff0c;每天都会有海量的埋点数据&#xff0c;以往基于HBase建设的埋点计算分析项目往往效率上…

基于微信小程序的自习室预约系统的设计与实现

个人介绍 hello hello~ &#xff0c;这里是 code袁~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的…

OJ 【难度1】【Python】完美字符串 扫雷 A-B数对 赛前准备 【C】精密计时

完美字符串 题目描述 你可能见过下面这一句英文&#xff1a; "The quick brown fox jumps over the lazy dog." 短短的一句话就包含了所有 2626 个英文字母&#xff01;因此这句话广泛地用于字体效果的展示。更短的还有&#xff1a; "The five boxing wizards…

【学习】软件测试中,我们为什么要进行系统测试

软件测试中的系统测试是一个关键环节&#xff0c;它主要是通过测试整个系统来验证软件是否满足需求规格说明书中的要求。在软件开发周期的后期&#xff0c;系统测试扮演着非常重要的角色&#xff0c;因为它可以发现并纠正软件中存在的错误和缺陷&#xff0c;确保软件的质量和稳…

【数据结构】双向链表 C++

一、什么是双向链表 1、定义 双向链表也叫双链表&#xff0c;是链表的一种&#xff0c;它的每个数据结点中都有两个指针&#xff0c;分别指向直接后继和直接前驱。所以&#xff0c;从双向链表中的任意一个结点开始&#xff0c;都可以很方便地访问它的前驱结点和后继结点。 双…

虹科Pico汽车示波器 | 免拆诊断案例 | 2011款东风悦达起亚K5车发动机偶尔起动困难

一、故障现象 一辆2011款东风悦达起亚K5车&#xff0c;搭载G4KD发动机&#xff0c;累计行驶里程约为24.5万km。车主反映&#xff0c;第1次起动发动机时偶尔无法起动着机&#xff0c;第2次能够正常起动着机&#xff0c;但发动机故障灯异常点亮。为此在其他维修厂维修过&#xf…

GDAL源码剖析(九)之GDAL体系架构

GDAL源码剖析&#xff08;九&#xff09;之GDAL体系架构_gdal 源码-CSDN博客 在GDAL库中包含栅格数据的读写&#xff0c;矢量数据的读写&#xff0c;以及栅格和矢量数据的相关算法。下面主要对GDAL中栅格数据和矢量数据的体系架构做一个简单的说明。本人英文很烂&#xff0c;有…

vue的 blob文件下载文件时,后端自定义异常,并返回json错误提示信息,前端捕获信息并展示给用户

1.后端返回的json数据结构为&#xff1a; {"message":"下载失败&#xff0c;下载文件不存在&#xff0c;请联系管理员处理&#xff01;","code":500} 2.vue 请求后台接口返回的 Blob数据 3.问题出现的原因是&#xff0c;正常其他数据列表接口&…

统一处理异常和记录日志

统一处理异常 SpringBoot设计&#xff0c;如果出现错误404或500&#xff0c;自动调用特定路径下的html页面(路径和名字都特定)。/templates/error/404.html、/templates/error/500.html。程序中有错误自动就调用该页面。 但是错误有异步请求错误&#xff0c;也想同时记录日志。…

Windows系统安装WinSCP结合内网穿透实现公网远程SSH本地服务器

List item 文章目录 1. 简介2. 软件下载安装&#xff1a;3. SSH链接服务器4. WinSCP使用公网TCP地址链接本地服务器5. WinSCP使用固定公网TCP地址访问服务器 1. 简介 ​ Winscp是一个支持SSH(Secure SHell)的可视化SCP(Secure Copy)文件传输软件&#xff0c;它的主要功能是在本…

公司电脑如何对文件进行加密?

在现代企业中&#xff0c;文件加密是确保敏感数据安全的关键。使用华企盾DSC数据安全防泄密系统&#xff0c;公司电脑可以轻松地对文件进行加密&#xff0c;以防止未授权的访问和数据泄露。以下是对文件进行加密的步骤和方法&#xff1a; 智能半透明加密&#xff1a;这种模式允…

IntelliJ IDEA(WebStorm、PyCharm、DataGrip等)设置中英文等宽字体,英文为中文的一半(包括标点符号)

1.设置前&#xff08;idea默认字体为 JetBrains Mono&#xff09; 2.设置后&#xff08;楷体&#xff09;

Vue3 使用ElementUI 显示异常

element提供的样例不能正常显示&#xff0c;需要进行配置 1.npm install element-plus --save 2.main.js // main.ts import { createApp } from vue import ElementPlus from element-plus //全局引入 import element-plus/dist/index.css import App from ./App.vue const …

list的常用接口底层实现与介绍

目录 概念&#xff1a; list的基本结构&#xff1a; list的迭代器⭐❤&#xff1a; 自定义类型的完善&#xff1a; const的迭代器&#xff1a; insert erase&#xff1a; size empty push_back 、push_front 、pop_back、pop_front swap 、operator 析构函数…