《黑马点评》Redis高并发项目实战笔记(上)P1~P45

 P1 Redis企业实战课程介绍

P2 短信登录 导入黑马点评项目

首先在数据库连接下新建一个数据库hmdp,然后右键hmdp下的表,选择运行SQL文件,然后指定运行文件hmdp.sql即可(建议MySQL的版本在5.7及以上):

下面这个hm-dianping文件是项目源码。在IDEA中打开。

记得要修改数据库连接和Redis连接的密码:

运行程序后尝试访问:localhost:8081/shop-type/list 进行简单测试:

将nginx文件复制到一个没有中文路径的目录,然后点击nginx.exe运行:

在nginx所在目录打开CMD窗口,输入命令:start nginx.exe

访问:localhost:8080,选择用手机模式看,可以看到具体的页面:

P3 短信登录 基于session实现短信登录的流程

点击发送验证码可以看到验证码发送成功:

P4 短信登录 实现发送短信验证码功能

 controller/UserController中写入如下代码:

@PostMapping("code")
public Result sendCode(@RequestParam("phone") String phone, HttpSession session) {//发送短信验证码并保存验证码return userService.sendCode(phone,session);
}

service/IUserService中写入如下代码:

public interface IUserService extends IService<User> {Result sendCode(String phone, HttpSession session);
}

service/impl/UserServiceImpl中写入如下代码:

@Service
public class UserServiceImpl extends ServiceImpl<UserMapper, User> implements IUserService {@Overridepublic Result sendCode(String phone, HttpSession session) {//校验手机号if(RegexUtils.isPhoneInvalid(phone)){//不符合return Result.fail("手机号格式错误");}//生成验证码String code = RandomUtil.randomNumbers(6);//保存验证码到sessionsession.setAttribute("code",code);//发送验证码log.debug("发送短信验证码成功,验证码:"+code);return Result.ok();}
}

P5 短信登录 实现短信验证码登录和注册功能

service/impl/UserServiceImpl的UserServiceImpl中写入如下代码:

  @Overridepublic Result login(LoginFormDTO loginForm, HttpSession session) {String phone = loginForm.getPhone();//校验手机if(RegexUtils.isPhoneInvalid(phone)){return Result.fail("手机号格式错误");}//校验验证码Object cacheCode = session.getAttribute("code");String code = loginForm.getCode();if(cacheCode==null || !cacheCode.toString().equals(code)){//不一致,报错return Result.fail("验证码错误");}//一致根据手机号查用户User user = query().eq("phone", phone).one();//判断用户是否存在if(user==null){//不存在,创建用户并保存user = createUserWithPhone(loginForm.getPhone());}//保存用户信息到sessionsession.setAttribute("user",user);return null;}private User createUserWithPhone(String phone){//1.创建用户User user = new User();user.setPhone(phone);user.setNickName(USER_NICK_NAME_PREFIX+RandomUtil.randomString(10));//2。保存用户save(user);return user;}

前端点击发送验证码,后端直接把验证码摘抄后输入:

 

勾选协议然后确定登录,出现如下代码:

然后看到数据库后台记录已更新:

P6 短信登录 实现登录校验拦截器

preHandle前置拦截:

postHandle后置拦截:

afterCompletion视图渲染之后返回给用户之前:

在utils下面编写一个LoginInterceptor类,实现preHandle和afterCompletion这两个方法(这里User和UserDto的问题,我推荐的是统一使用UserDto,采用BeanUtils里的copy方法即可):

public class LoginInterceptor implements HandlerInterceptor {@Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {//获取sessionHttpSession session = request.getSession();//获取用户User user = (User) session.getAttribute("user");//判断用户是否存在if(user==null){response.setStatus(401);return false;}UserDTO userDTO = new UserDTO();BeanUtils.copyProperties(user,userDTO);//存在,保存用户信息的ThreadLocalUserHolder.saveUser(userDTO);//放行return true;}@Overridepublic void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {//移除用户UserHolder.removeUser();}
}

在config下面创建一个MvcConfig类:

通过addInterceptors方法来添加拦截器,registry是拦截器的注册器。

用.excludePathPatterns来排除不需要拦截的路径。在这里code、login、bloghot、shop、shopType、upload和voucher等都不需要拦截。

@Configuration
public class MvcConfig implements WebMvcConfigurer {@Overridepublic void addInterceptors(InterceptorRegistry registry){registry.addInterceptor(new LoginInterceptor()).excludePathPatterns("/user/code","/user/login","/upload/**","/blog/hot","/shop/**","/shop-type/**","/voucher/**");}
}

输入手机号码点击获取验证码,写入返回后端的验证码,勾选协议之后,登录会直接返回首页,此时看我的个人主页没问题:

P7 短信登录 隐藏用户敏感信息

在P6已将User转为UserDTO返回给前端。

P8 短信登录 session共享的问题分析

多台Tomcat并不共享session存储空间,当请求切换不同Tomcat服务器时会导致数据丢失的问题。

session的替代方案应该满足:1.数据共享。2.内存存储。3.key、value结构。

P9 短信登录 Redis代替session的业务流程

想要保存用户的登录信息有2种方法:1.用String类型。2.用Hash类型。

String类型是以JSON字符串格式来保存,比较简单直观,但是占用内存比较多(因为有name和age这类的json格式):

Hash结构可以将对象中的每个字段独立存储,可以针对单个字段做CRUD,并且内存占用更少:

以随机的token作为key来存储用户的数据,token是用一个随机的字符串。

P10 短信登录 基于Redis实现短信登录

在UserServiceImpl中写入如下代码(调用StringRedisTemplate中的set方法进行数据插入,最好在key的前面加入业务前缀以示区分,形成区分):

@Resource
private StringRedisTemplate stringRedisTemplate;

在sendCode这个方法里将保存验证码的代码替换为下面:

//保存验证码到redis
stringRedisTemplate.opsForValue().set(LOGIN_CODE_KEY+phone,code,LOGIN_CODE_TTL, TimeUnit.MINUTES);

在login这个方法里进行如下2处修改:

 首先是校验验证码:

//校验验证码
String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);

然后是添加把用户信息添加到Redis的逻辑:

//7.保存用户信息到redis----------------
//7.1 随机生成Token作为登录令牌
String token = UUID.randomUUID().toString(true);
//7.2 将User对象转为Hash存储
UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
Map<String, Object> userMap = BeanUtil.beanToMap(userDTO);
//7.3 存储
stringRedisTemplate.opsForHash().putAll("login:token:"+token,userMap);
//7.4设置token有效期
String tokenKey = LOGIN_USER_KEY+token;
stringRedisTemplate.expire(tokenKey,LOGIN_USER_TTL,TimeUnit.MINUTES);
return Result.ok(token);

在MvcConfig类上有@Configuration注解,说明是由Spring来负责依赖注入。 

在MvcConfig类中要编写如下的代码:

@Configuration
public class MvcConfig implements WebMvcConfigurer {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic void addInterceptors(InterceptorRegistry registry){registry.addInterceptor(new LoginInterceptor(stringRedisTemplate)).excludePathPatterns("/user/code","/user/login","/upload/**","/blog/hot","/shop/**","/shop-type/**","/voucher/**");}
}

 在utils下的LoginInterceptor中写入如下代码:

public class LoginInterceptor implements HandlerInterceptor {@Resourceprivate StringRedisTemplate stringRedisTemplate;public LoginInterceptor(StringRedisTemplate stringRedisTemplate){this.stringRedisTemplate = stringRedisTemplate;}@Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {//TODO;1.获取请求头中的tokenString token = request.getHeader("authorization");if(StrUtil.isBlank(token)){//不存在,拦截,返回401状态码response.setStatus(401);return false;}//TODO:2.基于TOKEN获取redis的用户Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(LOGIN_USER_KEY + token);//判断用户是否存在if(userMap.isEmpty()){//不存在,拦截,返回401状态码response.setStatus(401);return false;}//TODO:3.将查询到的Hash数据转化为UserDTO对象UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false);//TODO:4.存在,保存用户信息的ThreadLocalUserHolder.saveUser(userDTO);//TODO:5.刷新token有效期stringRedisTemplate.expire(LOGIN_USER_KEY + token,RedisConstants.LOGIN_USER_TTL, TimeUnit.MINUTES);//放行return true;}@Overridepublic void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {//移除用户UserHolder.removeUser();}
}

测试:首先把Redis和数据库都启动。 原始的项目的Redis的服务器ID需要更改为自己的。点击发送验证码,redis中有记录,没问题:

但点击登录的时候会报一个无法将Long转String的错误。因为用的是stringRedisTemplate要求所有的字段都是string类型的。

需要对UserServiceImpl中如下的位置进行修改:

Map<String, Object> userMap = BeanUtil.beanToMap(userDTO,new HashMap<>(),CopyOptions.create().setIgnoreNullValue(true).setFieldValueEditor((fieldName,fieldValue)->fieldValue.toString()));

效果如下:

P11 短信登录 解决状态登录刷新问题

现在只有在用户访问拦截器拦截的页面才会刷新页面,假如用户访问的是不需要拦截的页面则不会导致页面的刷新。

现在的解决思路是:新增一个拦截器,拦截一切路径。

复制LoginInterceptor变成一份新的RefreshTokenInterceptor,把下面几处地方改为return true即可:

LoginInterceptor的代码变成如下:

public class LoginInterceptor implements HandlerInterceptor {@Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {//1.判断是否需要拦截(ThreadLocal中是否有用户)if(UserHolder.getUser()==null){//没有,需要拦截,设置状态码response.setStatus(401);//拦截return false;}//放行return true;}@Overridepublic void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {//移除用户UserHolder.removeUser();}
}

现在还需要在MvcConfig里面对拦截器进行更新配置,需要(用order)调整拦截器的执行顺序: 

@Configuration
public class MvcConfig implements WebMvcConfigurer {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic void addInterceptors(InterceptorRegistry registry){registry.addInterceptor(new LoginInterceptor()).excludePathPatterns("/user/code","/user/login","/upload/**","/blog/hot","/shop/**","/shop-type/**","/voucher/**").order(1);registry.addInterceptor(new RefreshTokenInterceptor(stringRedisTemplate)).addPathPatterns("/**").order(0);}
}

P12 什么是缓存

缓存就是数据交换的缓冲区,是存储数据的临时地方,一般读写性能较高。

缓存作用:降低后端负载;提高读写的效率,降低响应时间。

缓存成本:数据一致性成本(数据库里的数据如果发生变化,容易与缓存中的数据形成不一致)。代码维护成本高(搭建集群)。运营成本高。

P13 添加商户缓存

在ShopController类的queryShopById方法中:

@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {return Result.ok(shopService.queryById(id));
}

在IShopService接口中编写如下代码:

public interface IShopService extends IService<Shop> {Object queryById(Long id);
}

在ShopServiceImpl类的queryById方法中编写具体代码:

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Object queryById(Long id) {String key = CACHE_SHOP_KEY + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isNotBlank(shopJson)){//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//4.不存在,根据id查询数据库Shop shop = getById(id);//5.不存在,返回错误if(shop==null){return Result.fail("店铺不存在!");}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop));return Result.ok(shop);}
}

 核心是通过调用hutool工具包中的JSONUtil类来实现对象转JSON(方法:toJsonStr(对象))和JSON转对象(方法:toBean(json,Bean的类型))。

P14 缓存练习题分析

TODO:对分类进行缓存。

P15 缓存更新策略

主动更新:编写业务逻辑,在修改数据库的同时,更新缓存。

适用于高一致性的需求:主动更新,以超时剔除作为兜底方案。

主动更新策略:

1.由缓存的调用者,在更新数据库的同时更新缓存。(一般情况下使用该种方案)

2.缓存与数据库聚合为一个服务,由服务来维护一致性。调用者调用该服务,无需关心缓存的一致性问题。

3.调用者只操作缓存,由其它线程异步的将缓存数据持久化到数据库,保证最终一致。

对1进行分析:

1.选择删除缓存还是更新缓存?如果是更新缓存:每次更新数据库都会更新缓存,无效的写操作比较多。删除缓存:更新数据库时让缓存失效,查询时再更新缓存。

2.如何保证缓存与数据库的操作的同时成功或失败?

单体系统:将缓存与数据库操作放在一个事务。

分布式系统:利用TCC等分布式事务方案。

3.先操作缓存还是先操作数据库?

先删缓存,再操作(写)数据库:

先操作(写)数据库,再删除缓存(出现的概率比较低)

要求线程1来查询的时候缓存恰好失效了->在写入缓存的时候突然来了线程2,对数据库的数据进行了修改->此时线程1写回缓存的是旧数据。

P16 实现商铺缓存与数据库的双写一致

给查询商铺的缓存添加超时剔除和主动更新的策略。

修改ShopController中的业务逻辑,满足下面要求:

1.根据id查询商铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间。

2.根据id修改店铺时,先修改数据库,再删除缓存。

首先修改ShopServiceImpl的redis过期时间:

stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);

修改ShopController中的updateShop方法:

@PutMapping
public Result updateShop(@RequestBody Shop shop) {// 写入数据库return Result.ok(shopService.update(shop));
}

向IShopService接口中添加update方法:

Object update(Shop shop);

向ShopServiceImpl类中添加update方法:

@Override
public Object update(Shop shop) {Long id = shop.getId();if(id == null){return Result.fail("商铺id不存在");}updateById(shop);stringRedisTemplate.delete(CACHE_SHOP_KEY + id);return Result.ok();
}

首先删除缓存中的数据,然后看SQL语句是否执行,是否加上了TTL过期时间。

在PostMan中访问http://localhost:8081/shop,然后修改101茶餐厅为102茶餐厅:

 注意要发送的是PUT请求,请求的内容如下:

{"area": "大关","openHours": "10:00-22:00","sold": 4215,"address": "金华路锦昌文华苑29号","comments": 3035,"avgPrice": 80,"score": 37,"name": "102茶餐厅","typeId": 1,"id": 1
}

然后去数据库看是否名称更新为102茶餐厅,然后看缓存中的数据是否被删除,用户刷新页面看到102茶餐厅,缓存中会有最新的数据。

P17 缓存穿透的解决思路

缓存穿透指的是客户端请求的数据在缓存中和数据库中都不存在,使得缓存永远不会生效,请求都会打到数据库。

2种解决方法:

1.缓存空对象。优点:实现简单,维护方便。缺点:额外的内存消耗。可能造成短期的不一致(可以设置TTL)。

2.布隆过滤。在客户端和Redis之间加个布隆过滤器(存在不一定存在,不存在一定不存在,有5%的错误率)。

优点:内存占用较少,没有多余key。缺点:实现复杂,存在误判可能。

P18 编码解决商铺查询的缓存穿透问题

下图是原始的:

下面是更改后的:

在ShopServiceImpl类里对queryById方法进行修改:

@Override
public Object queryById(Long id) {String key = CACHE_SHOP_KEY + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isNotBlank(shopJson)){//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//上面是有值的情况,下面是无值的2种情况:A:空字符串。B:null。if(shopJson != null){return Result.fail("店铺信息不存在!");}//4.不存在,根据id查询数据库Shop shop = getById(id);//5.不存在,返回错误if(shop==null){stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);return Result.fail("店铺不存在!");}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);return Result.ok(shop);
}

测试:

localhost:8080/api/shop/1此时是命中数据。

localhost:8080/api/shop/0此时未命中数据。打开缓存可以看到缓存的是空,并且TTL是200秒。

总结缓存穿透:用户请求的数据在缓存中和数据库中都不存在,不断发起请求,会给数据库造成巨大压力。

缓存穿透:缓存null值和布隆过滤器。还可以增强id的复杂度,避免被猜测id规律。做好数据的基础格式校验。加强用户权限校验。做好热点参数的限流。

P19 缓存雪崩问题及解决思路

缓存雪崩:是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求打到数据库,带来巨大的压力。

解决方案:

1.(解决大量缓存key同时失效)给不同Key的TTL添加随机值。

2.(解决Redis宕机)利用Redis集群提高服务的可用性。

3.给缓存业务添加降级限流策略。

4.给业务添加多级缓存(浏览器可以有缓存,nginx可以有缓存,redis可以有缓存,数据库可以有缓存)。

P20 缓存击穿问题及解决方案

缓存击穿问题:也叫热点key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然消失了,无数的请求访问在瞬间给数据库带来巨大的冲击。

解决方案:

1.互斥锁。由获取互斥锁成功的线程来查询数据库重建缓存数据。缺点:未获得互斥锁的线程需要等待,性能略差。

2.逻辑过期。设置一个逻辑时间字段,查询缓存的时候检查逻辑时间看是否已过期。如果某个线程获取到互斥锁就开启新线程,由新线程查询数据库重建缓存数据。

其它线程在获取互斥锁失败后不会等待,而是直接返回过期的数据。只有当缓存重建完毕之后释放锁,新线程才会读到最新的数据。

互斥锁优点:

互斥锁没有额外的内存消耗:因为逻辑过期需要维护一个逻辑过期的字段,有额外内存消耗。

互斥锁可以保证强一致性,所有线程拿到的是最新数据。实现也很简单。

互斥锁缺点:

线程需要等待,性能受到影响。可能会有死锁的风险。

逻辑过期优点:

线程无需等待,性能较好。

逻辑过期缺点:

不保证一致性。有额外内存消耗。实现复杂。

P21 利用互斥锁解决缓存击穿问题

在ShopServiceImpl类中定义一个tryLock方法(在Redis中的setnx相当于setIfAbsent方法。)

public boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);
}

在ShopServiceImpl类中定义一个unLock方法用于解锁。

public void unLock(String key){stringRedisTemplate.delete(key);
}

在ShopServiceImpl类中定义一个queryWithPassThrough方法。

public Shop queryWithPassThrough(Long id){String key = CACHE_SHOP_KEY + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isNotBlank(shopJson)){//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return shop;}//上面是有值的情况,下面是无值的2种情况:A:空字符串。B:null。if(shopJson != null){return null;}//4.不存在,根据id查询数据库Shop shop = getById(id);//5.不存在,返回错误if(shop==null){stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);return null;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);return shop;
}

在ShopServiceImpl类中定义一个queryWithMutex方法:

public Shop queryWithMutex(Long id){String key = CACHE_SHOP_KEY + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isNotBlank(shopJson)){//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return shop;}//上面是有值的情况,下面是无值的2种情况:A:空字符串。B:null。if(shopJson != null){return null;}//4.实现缓存重建//4.1 获取互斥锁String lockKey = LOCK_SHOP_KEY+id;Shop shop = null;try {boolean isLock = tryLock(lockKey);//4.2 判断是否获取成功if(!isLock){//4.3 失败,则休眠并重试Thread.sleep(50);return queryWithMutex(id);}//4.4 获取互斥锁成功,根据id查询数据库shop = getById(id);//模拟重建的延时Thread.sleep(200);//5.数据库查询失败,返回错误if(shop==null){stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);return null;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e) {throw new RuntimeException(e);}finally {//7.释放互斥锁unLock(lockKey);}//8.返回return shop;
}

在ShopServiceImpl类中修改queryById,调用queryWithMutex:

public Object queryById(Long id) {//缓存穿透//Shop shop = queryWithPassThrough(id);//互斥锁解决缓存击穿Shop shop = queryWithMutex(id);return Result.ok(shop);
}

测试:

定义1000个线程,Ramp-Up时间为5。

请求地址:localhost:8081/shop/1。

设置完毕后点击绿色箭头运行,此时会提示是否保存测试文件,选择不保存(我测试选择保存会报错)。

可以在结果树这里看请求是否发送成功:

先删掉缓存,然后点击绿色箭头发送并发请求,可以发现所有线程请求成功,控制台对数据库的查询只有1次(没有出现多个线程争抢查询数据库的情况),测试成功。

P22 利用逻辑过期解决缓存击穿问题

如何添加逻辑过期字段?答:可以在utils包下定义RedisData类(可以让Shop继承RedisData类),也可以在RedisData中设置一个Shop类的data属性:

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

在ShopServiceImpl类中定义saveShop2Redis方法:

public void saveShop2Redis(Long id,Long expireSeconds){//1.查询店铺数据Shop shop = getById(id);//2.封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));//3.写入RedisstringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
}

单元测试,在test包下的HmDianPingApplicationTests中创建testSaveShop类写入测试代码(这里要注意的是输入alt+insert之后选择Test Method要选择Junit 5来进行测试方法的编写):

@SpringBootTest
class HmDianPingApplicationTests {@Resourceprivate ShopServiceImpl shopService;@Testvoid testSaveShop() {shopService.saveShop2Redis(1L,10L);}
}

可以看到redis中确实存入了数据:

在ShopServiceImpl中复制一份缓存穿透的代码,更改名称为queryWithLogicalExpire:

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire(Long id){String key = CACHE_SHOP_KEY + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isBlank(shopJson)){//3.不存在,返回空return null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);JSONObject data = (JSONObject) redisData.getData();Shop shop = JSONUtil.toBean(data, Shop.class);//5.判断是否过期//5.1 未过期直接返回店铺信息LocalDateTime expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){return shop;}//5.2 已过期重建缓存//6.缓存重建//6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);//6.2.判断是否获取互斥锁成功if(isLock){//6.3.成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {saveShop2Redis(id,20L); //实际中应该设置为30分钟} catch (Exception e) {throw new RuntimeException(e);} finally {unLock(lockKey);}});}//6.4.失败,返回过期的商铺信息return shop;
}

测试:

先到数据库把102茶餐厅改为103茶餐厅(因为Redis之前插入了一条缓存为102茶餐厅,并且已经过期,此时数据库与缓存不一致),新的HTTP请求会将逻辑过期的数据删除,然后更新缓存。

线程数设置为100,Ramp-up时间设置为1

在查看结果树里面到中间某个HTTP请求会完成重建,响应数据会改变。

1.安全性问题:在高并发情况下是否会有很多线程来做重建。

2.一致性问题:在重建完成之前得到的是否是旧的数据。

P23 封装Redis工具类

在utils包下创建CacheClient类,先写入如下基础的代码:

@Slf4j
@Component
public class CacheClient {private final StringRedisTemplate stringRedisTemplate;public CacheClient(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public void set(String key, Object value, Long time, TimeUnit unit){stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(value),time,unit);}public void setWithLogicalExpire(String key, Object value,Long expire,TimeUnit unit){//设置逻辑过期RedisData redisData = new RedisData();redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(expire)));redisData.setData(value);stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(redisData));}}

在CacheClient类中编写缓存穿透的共性方法queryWithPassThrough: 

public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type,Function<ID,R> dbFallBack,Long time,TimeUnit unit){String key = keyPrefix + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isNotBlank(shopJson)){//3.存在,直接返回return JSONUtil.toBean(shopJson, type);}//上面是有值的情况,下面是无值的2种情况:A:空字符串。B:null。if(shopJson != null){return null;}//4.不存在,根据id查询数据库R r = dbFallBack.apply(id);//5.不存在,返回错误if(r==null){stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);return null;}//6.存在,写入Redisthis.set(key,r,time,unit);return r;
}

编写完queryWithPassThrough之后可以到ShopServiceImpl中直接调用新的方法(记得引入CacheClient类):

@Resource
private CacheClient cacheClient;
@Override
public Object queryById(Long id) {//调用工具类解决缓存击穿Shop shop = cacheClient.queryWithPassThrough(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);if(shop==null){return Result.fail("店铺不存在!");}return Result.ok(shop);
}

进行测试:成功会对不存在的店铺空值进行缓存。

 

接下来拷贝queryWithLogicalExpire的代码到CacheClient类中进行改写:

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public <R,ID> R queryWithLogicalExpire(String keyPrefix,ID id,Class<R> type,Function<ID,R> dbFallBack,Long time,TimeUnit unit){String key = keyPrefix + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if(StrUtil.isBlank(shopJson)){//3.不存在,返回空return null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);JSONObject data = (JSONObject) redisData.getData();R r = JSONUtil.toBean(data, type);//5.判断是否过期//5.1 未过期直接返回店铺信息LocalDateTime expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){return r;}//5.2 已过期重建缓存//6.缓存重建//6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);//6.2.判断是否获取互斥锁成功if(isLock){//6.3.成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {//查询数据库R r1 = dbFallBack.apply(id);//写入redisthis.setWithLogicalExpire(key,r1,time,unit);} catch (Exception e) {throw new RuntimeException(e);} finally {unLock(lockKey);}});}//6.4.失败,返回过期的商铺信息return r;
}
public boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);
}
public void unLock(String key){stringRedisTemplate.delete(key);
}

 改写test下的HmDianPingApplicationTests类:

@SpringBootTest
class HmDianPingApplicationTests {@Resourceprivate CacheClient cacheClient;@Resourceprivate ShopServiceImpl shopService;@Testvoid testSaveShop() throws InterruptedException {Shop shop = shopService.getById(1L);cacheClient.setWithLogicalExpire(CACHE_SHOP_KEY+1L,shop,10L,TimeUnit.SECONDS);}
}

测试:首先运行HmDianPingApplicationTests类里的测试方法,10秒后逻辑过期,此时运行后台程序,修改数据库1号商铺的name字段,此时访问:localhost:8080/api/shop/1 会出现效果第1次访问为缓存旧值,然后发现缓存过期开始重建,第2次访问开始就是新值。数据库也只有1次重建。

P24 缓存总结

P25 优惠券秒杀 全局唯一ID

每个店铺都可以发布优惠券,当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID会存在一些问题。

1.id的规律性太明显。

2.受单表数据量的限制(分表之后每张表都自增长,id会出现重复)。

全局ID生成器:是一种在分布式系统下用来生成全局唯一ID的工具。

要求全局唯一ID生成器满足如下几点:1.唯一性。2.高可用。3.高性能。4.递增性。5.安全性。

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息。

符号位永远为0代表整数。

31位的时间戳是以秒为单位,定义了一个起始时间,用当前时间减起始时间,预估可以使用69年。

32位的是序列号是Redis自增的值,支持每秒产生2^32个不同ID。

P26 优惠券秒杀 Redis实现全局唯一id

在utils包下定义一个RedisWorker类,是一个基于Redis的ID生成器。

如果只使用一个key来自增记录有一个坏处,最终key的自增数量会突破容量的上限,假如自增超过32位彼时便无法再存储新的数据,解决的方案是采用拼接日期。

@Component
public class RedisIdWorker {private static final long BEGIN_TIMESTAMP = 1640995200L;//序列号的位数private static final int COUNT_BITS=32;private StringRedisTemplate stringRedisTemplate;public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public  long nextId(String keyPrefix){//1.生成时间戳LocalDateTime now = LocalDateTime.now();long timeStamp = now.toEpochSecond(ZoneOffset.UTC) - BEGIN_TIMESTAMP;//2.生成序列号//2.1获取当前日期,精确到天String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));//2.2自增长long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);//3.拼接并返回return timeStamp << COUNT_BITS | count;}
}

在HmDianPingApplicationTests中写入如下的测试代码:

@Resource
private ShopServiceImpl shopService;
@Resource
private RedisIdWorker redisIdWorker;
private ExecutorService es = Executors.newFixedThreadPool(500);
@Test
void testIdWorker() throws InterruptedException {CountDownLatch latch = new CountDownLatch(300);Runnable task = ()->{for(int i=0;i<100;i++){long id = redisIdWorker.nextId("order");System.out.println("id="+id);}latch.countDown();};long begin = System.currentTimeMillis();for(int i=0;i<300;i++){es.submit(task);}latch.await();long end = System.currentTimeMillis();System.out.println("Result Time = " + (end-begin));
}

运行之后可以看到以十进制输出的所有编号: 

 

可以在Redis中看到自增长的结果,1次是30000: 

大概2秒可以生成3万条,速度还是可以的。

全局唯一ID生成策略:

1.UUID利用JDK自带的工具类即可生成,生成的是16进制的字符串,无单调递增的特性。

2.Redis自增(每天一个key,方便统计订单量。时间戳+计数器的格式。)

3.snowflake雪花算法(不依赖于Redis,性能更好,对于时钟依赖)

4.数据库自增

P27 优惠券秒杀 添加优惠券

每个店铺都可以发放优惠券,分为平价券和特价券。平价券可以任意抢购,特价券需要秒杀抢购。

tb_voucher:优惠券基本信息,优惠金额,使用规则等。

tb_seckill_voucher:优惠券的库存,开始抢购时间,结束抢购时间,只有特价优惠券才需要填写这些信息。

请求的信息如下可自行复制(注意beginTime和endTime需要修改):

{
"shopId":1,
"title":"100元代金券",
"subTitle":"周一至周五均可使用",
"rules":"全场通用\\n无需预约\\n可无限叠加\\不兑现、不找零\\n仅限堂食",
"payValue":8000,
"actualValue":10000,
"type":1,
"stock":100,
"beginTime":"2024-04-10T10:09:17",
"endTime":"2024-04-11T12:09:04"
}

注意要在请求头中带Authorization参数否则会报401(登录后进入“我的”页面,看网络包有Authorization的值): 

以如下格式发送请求:

首先在tb_voucher表中可以看到新增的优惠券:

在tb_seckill_voucher表中也可以看到秒杀优惠券的具体信息:

在前端也能看到新增的100元代金券,注意优惠券的时间一定要进行更改,如果不在开始和结束时间区间内优惠券会处于下架状态是看不到的。

 P28 优惠券秒杀 实现秒杀下单

首先要判断秒杀是否开始或结束,所以要先查询优惠券的信息,如果尚未开始或者已经结束无法下单。

要判断库存是否充足,如果不足则无法下单。

在VouchrOrderController类中:

@RestController
@RequestMapping("/voucher-order")
public class VoucherOrderController {@Resourceprivate IVoucherService voucherService;@PostMapping("seckill/{id}")public Result seckillVoucher(@PathVariable("id") Long voucherId) {return voucherService.seckillVoucher(voucherId);}
}

在IVoucherOrderService中写入如下代码:

public interface IVoucherOrderService extends IService<VoucherOrder> {Result seckillVoucher(Long voucherId);
}

在VoucherOrderServiceImpl中写入如下代码:

@Service
@Transactional
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {@Resourceprivate ISeckillVoucherService seckillVoucherService;@Resourceprivate RedisIdWorker redisIdWorker;@Overridepublic Result seckillVoucher(Long voucherId) {//1.查询优惠券信息SeckillVoucher voucher = seckillVoucherService.getById(voucherId);//2.判断秒杀是否开始//2.1秒杀尚未开始返回异常if(voucher.getBeginTime().isAfter(LocalDateTime.now())){return Result.fail("秒杀尚未开始");}//2.2秒杀已结束返回异常if(voucher.getEndTime().isBefore(LocalDateTime.now())){return Result.fail("秒杀已经结束");}//3.判断库存是否充足if(voucher.getStock()<1){//3.1库存不足返回异常return Result.fail("库存不足!");}//3.2库存充足扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1").eq("voucher_id", voucherId).update();if(!success){return Result.fail("库存不足!");}//4.创建订单,返回订单idVoucherOrder voucherOrder = new VoucherOrder();long orderId = redisIdWorker.nextId("order");//订单idvoucherOrder.setId(orderId);Long userId = UserHolder.getUser().getId();//用户idvoucherOrder.setUserId(userId);voucherOrder.setVoucherId(voucherId);//代金券idsave(voucherOrder);return Result.ok(orderId);}
}

测试:点击限时抢购之后会提示抢购成功。

P29 优惠券秒杀 库存超卖问题分析

Jmeter的配置如下:

注意Authorization要事先登录获取:

下面是结果:

发现tb_seckill_voucher中库存为-9,在tb_voucher_order中插入了109条数据,说明出现了超卖的问题。

正常逻辑:

非正常逻辑:

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案是加锁。

悲观锁:认为线程安全问题一定会发送,因此在操作数据之前要先获取锁,确保线程串行执行。像Synchronized、Lock都属于悲观锁。

乐观锁:认为线程安全问题不一定会发生,因此不加锁,只是在更新数据时去判断有没有其它线程对数据做了修改。

如果没有修改则认为是安全的,自己才更新数据。

如果已经被其它线程修改说明发生了安全问题,此时可以重试或异常。‘

乐观锁关键是判断之前查询得到的数据是否被修改过,常见的方法有2种:

1.版本号法:

2.CAS法(版本号法的简化版):查询的时候把库存查出来,更新的时候判断库存和之前查到的库存是否一致,如果一致则更新数据。

P30 优惠券秒杀 乐观锁解决超卖

只需加上下面这段代码即可:.eq("stock",voucher.getStock()) 。用于比较当前数据库的库存值和之前查询到的库存值是否相同,只有相同时才可以执行set语句。

//3.2库存充足扣减库存
boolean success = seckillVoucherService.update().setSql("stock = stock - 1") //相当于set条件 set stock = stock - 1.eq("voucher_id", voucherId) //相当于where条件 where id = ? and stock = ?.eq("stock",voucher.getStock()).update();

但现在出现了异常值偏高的问题,正常的请求大约只占10%。 

原理是因为:假如一次有30个线程涌入,查询到库存值为100,只有1个线程能把值改为99,其它29个线程比对库存值99发现和自己查询到的库存值100不同,所以都认为数据已经被修改过,所以都失败了。

乐观锁的问题,成功率太低。

现在只需要保证stock>0即可,只要存量大于0就可以任意扣减。

boolean success = seckillVoucherService.update().setSql("stock = stock - 1") //相当于set条件 set stock = stock - 1.eq("voucher_id", voucherId) //相当于where条件 where id = ? and stock = ?.gt("stock",0).update();

乐观锁缺陷:

需要大量对数据库进行访问,容易导致数据库的崩溃。

总结:

 P31 优惠券秒杀 实现一人一单功能

修改秒杀业务,要求同一个优惠券,一个用户只能下一单。

首先不建议把锁加在方法上,因为任何一个用户来了都要加这把锁,而且是同一把锁,方法之间变成串行执行,性能很差。

因此可以把锁加在用户id上,只有当id相同时才会对锁形成竞争关系。但是因为toString的内部是new了一个String字符串,每调一次toString都是生成一个全新的字符串对象,锁对象会变。

所以可以调用intern()方法,intern()方法会优先去字符串常量池里查找与目标字符串值相同的引用返回(只要字符串一样能保证返回的结果一样)。

但是因为事务是在函数执行结束之后由Spring进行提交,如果把锁加在createVoucherOrder内部其实有点小——因为如果解锁之后,其它线程可以进入,而此时事务尚未提交,仍然会导致安全性问题。

因此最终方案是把synchronized加在createVoucherOrder的方法外部,锁住的是用户id。

关于代理对象事务的问题:通常情况下,当一个使用了@Transactional注解的方法被调用时,Spring会从上下文中获取一个代理对象来管理事务。

但是如果加@Transactional方法是被同一个类中的另一个方法调用时,Spring不会使用代理对象,而是直接调用该方法,导致事务注解失效。

为避免这种情况,可以使用AopContext.currentProxy方法获取当前的代理对象,然后通过代理对象调用被@Transactional注解修饰的方法,确保事务生效。

在VoucherOrderServiceImpl中写入如下代码(注意:ctrl+alt+m可以把含有return的代码段进行提取):

@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {@Resourceprivate ISeckillVoucherService seckillVoucherService;@Resourceprivate RedisIdWorker redisIdWorker;@Overridepublic Result seckillVoucher(Long voucherId) {//1.查询优惠券信息SeckillVoucher voucher = seckillVoucherService.getById(voucherId);//2.判断秒杀是否开始//2.1秒杀尚未开始返回异常if(voucher.getBeginTime().isAfter(LocalDateTime.now())){return Result.fail("秒杀尚未开始");}//2.2秒杀已结束返回异常if(voucher.getEndTime().isBefore(LocalDateTime.now())){return Result.fail("秒杀已经结束");}voucher = seckillVoucherService.getById(voucherId);//3.判断库存是否充足if(voucher.getStock()<1){//3.1库存不足返回异常return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();synchronized (userId.toString().intern()){//获取代理对象IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);}}@Transactionalpublic Result createVoucherOrder(Long voucherId) {//6.一人一单Long userId = UserHolder.getUser().getId();//6.1查询订单int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();//6.2判断是否存在if(count>0){//用户已经购买过了return Result.fail("用户已经购买过一次!");}//3.2库存充足扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1") //相当于set条件 set stock = stock - 1.eq("voucher_id", voucherId) //相当于where条件 where id = ? and stock = ?.gt("stock",0).update();if(!success){return Result.fail("库存不足!");}//4.创建订单,返回订单idVoucherOrder voucherOrder = new VoucherOrder();long orderId = redisIdWorker.nextId("order");//订单idvoucherOrder.setId(orderId);voucherOrder.setUserId(userId);voucherOrder.setVoucherId(voucherId);//代金券idsave(voucherOrder);return Result.ok(orderId);}
}

在IVoucherOrderService接口中加入下面这个方法:

Result createVoucherOrder(Long voucherId);

在pom.xml中引入如下的依赖:

<dependency><groupId>org.aspectj</groupId><artifactId>aspectjweaver</artifactId>
</dependency>

 在启动类HmDianPingApplication上加如下注解:

@EnableAspectJAutoProxy(exposeProxy = true)

测试: 成功实现一名用户只能领取一张优惠券。

 
P32 优惠券秒杀 集群下的线程并发安全问题

本P主要是为了验证在集群下synchronized并不能保证线程的并发安全。

如下图可以设置项目启动的端口号,确保启动的项目之间端口号不同:

在nginx.conf中放开8082的这个配置:

向下面这个页面发送请求:

http://localhost:8080/api/voucher/list/1

 可以看到请求会分别被8082和8081接收,是轮询的效果:

首先到tb_voucher_order把之前的订单删除,到tb_seckill_voucher中把stock重新改回100。

准备2个相同的秒杀请求:要注意请求的地址是:http://localhost:8080/api/voucher-order/seckill/13

我这里直接用Jemeter来进行测试,模拟高并发场景:

下面是效果:可以看到并发请求能够同时进入集群的每台结点。

正常情况:

在集群模式下,每一个节点都是一个全新的JVM,每个JVM都有自己的锁。锁监视器只能在当前JVM的范围内,监视线程实现互斥。

现在就要实现让多个JVM使用的是同一把锁。跨JVM、跨进程的锁。

P33 分布式锁 基本原理和不同实现方式对比

synchronized只能保证单个JVM内部的多个线程之间的互斥,而没法让集群下多个JVM进程间的线程互斥。

 要让多个JVM进程能看到同一个锁监视器,而且同一时间只有一个线程能拿到锁监视器。

所以必须使用分布式锁,分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁要满足:多进程可见+互斥+高可用+高性能+安全性。

分布式锁可以通过MySQL或Redis或Zookeeper来实现。

MySQL:

1.互斥:是利用mysql本身的互斥锁机制。在执行写操作的时候,MySQL会自动分配一个互斥的锁。

2.可用性:好。3.性能:受限于MySQL性能。

4.安全性:事务机制,如果断开连接,会自动释放锁。

Redis:

1.互斥:利用setnx这样的互斥命令。往Redis里set数据只有不存在时才能set成功。

2.可用性:好,Redis支持主从和集群。3.性能:好。

4.安全性:如果没有执行删除key的操作,key不会自动释放。但可以利用锁的超时机制,到期自动释放。

Zookeeper:

1.利用节点的唯一性(节点不重复)和有序性(节点递增)实现互斥。利用有序性:id最小的节点获取锁成功;释放锁只需要删除id最小的节点。

2.可用性:好。3.性能:比Redis差,一般,强调强一致性,主从间同步需要时间。

4.安全性:好。因为是临时节点,断开连接会自动释放。

P34 分布式锁 Redis的分布式锁实现思路

假如获取锁后宕机,锁无法释放——>可以添加超时过期时间。

为了防止锁在SETEX和EXPIRE之间过期,可以直接用一条命令(原子操作)来实现设置过期时间(EX)和只有lock不存在时才能设置(NX)。

采用非阻塞式获取锁,如果成功返回true,失败返回false。

P35 分布式锁 实现Redis分布式锁版本1

在utils下面创建一个ILock接口:

public interface ILock {//尝试获取锁boolean tryLock(long timeoutSec);//释放锁void unlock();
}

在utils下面实现SimpleRedisLock类:

public class SimpleRedisLock implements ILock {private String name;private StringRedisTemplate stringRedisTemplate;public SimpleRedisLock(String name, StringRedisTemplate stringRedisTemplate) {this.name = name;this.stringRedisTemplate = stringRedisTemplate;}private static final String KEY_PREFIX = "lock:";@Overridepublic boolean tryLock(long timeoutSec) {//获取线程标示long threadId = Thread.currentThread().getId();Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX+name,threadId+"",timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);}@Overridepublic void unlock() {//释放锁stringRedisTemplate.delete(KEY_PREFIX+name);}
}

更改VoucherOrderServiceImpl类中的seckillVoucher方法的代码:

@Resource
private RedisIdWorker redisIdWorker;
@Resource
private StringRedisTemplate stringRedisTemplate;@Override
public Result seckillVoucher(Long voucherId) {//1.查询优惠券信息SeckillVoucher voucher = seckillVoucherService.getById(voucherId);//2.判断秒杀是否开始//2.1秒杀尚未开始返回异常if(voucher.getBeginTime().isAfter(LocalDateTime.now())){return Result.fail("秒杀尚未开始");}//2.2秒杀已结束返回异常if(voucher.getEndTime().isBefore(LocalDateTime.now())){return Result.fail("秒杀已经结束");}voucher = seckillVoucherService.getById(voucherId);//3.判断库存是否充足if(voucher.getStock()<1){//3.1库存不足返回异常return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();SimpleRedisLock lock = new SimpleRedisLock("order:"+userId,stringRedisTemplate);boolean isLock = lock.tryLock(1200);//判断是否获取锁成功if(!isLock) {return Result.fail("不允许重复下单");}try {//获取代理对象IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);}finally {lock.unlock();}}

经测试多台节点相同用户只能获取同一张优惠券成功: 

 

P36 分布式锁 Redis分布式锁误删问题

假如某个线程(线程A)获取到锁之后,出现了业务阻塞,导致阻塞时间超过了锁自动释放的时间,锁因超时自动释放。此时其它线程(线程B)过来拿到了锁,开始执行业务。但线程A此时业务执行完毕,释放了锁,但释放的是线程B的锁。此时线程C过来看锁已被释放,趁虚而入拿到锁,此时线程B和线程C是并行执行。

要解决这个问题:线程在删除锁之前要先看锁是否是自己加的(获取锁的标示并判断是否一致)。

P37 分布式锁 解决Redis分布式锁误删问题

1.在获取锁时存入线程标示(可以用UUID表示)。

2.在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致(如果一致释放锁,如果不一致则不释放锁)。

首先要修改SimpleRedisLock里面的如下代码,主要是调用hutool工具包生成UUID(每次线程调用都会生成一个唯一的UUID),让Redis的前缀变成UUID+线程ID:

private static final String ID_PREFIX = UUID.fastUUID().toString(true)+"-";
@Override
public boolean tryLock(long timeoutSec) {//获取线程标示String threadId = ID_PREFIX + Thread.currentThread().getId();Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX+name,threadId,timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);
}

现在要修改的是SimpleRedisLock类里面的unlock方法,主要是比较当前线程的标示和Redis中锁的标示是否一致,只有标示一致才能释放锁:

@Override
public void unlock() {//获取线程标示String threadId = ID_PREFIX + Thread.currentThread().getId();//获取锁中的标示String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);if(threadId.equals(id)){//释放锁stringRedisTemplate.delete(KEY_PREFIX+name);}
}

P38 分布式锁 分布式锁的原子性问题

现在假设出现了其它问题,比如线程1在判断完锁标示是否一致之后出现了阻塞(比如JVM垃圾回收FULL GC导致阻塞了过长时间),此时锁超时了,线程2趁虚而入获取了锁,此时线程1直接释放了线程2的锁,此时线程3趁虚而入继续给Redis加锁,此时会出现线程2和线程3并行执行。

根本的原因是:获取锁标示和释放锁的操作不是原子性的,现在要解决的问题就是将这两个操作变成原子性的。

P39 分布式锁 Lua脚本解决多条命令原子性问题

Redis提供Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。

Lua是一种编程语言,它的基本语法可以参考网站:https://www.runoob.com/lua/lua-tutorial.html

执行脚本的方法:

执行一个写死的set命令:

在Lua语言里,数组的第一个元素下标是1。

P40 分布式锁 Java调用lua脚本改造分布式锁

 

繁琐版的Lua脚本内容如下:

-- 锁的key
local key = KEYS[1]
-- 当前线程标示
local threadId = ARGV[1]--获取锁中的线程标示
local id = redis.call('get',key)
--比较线程标示与锁中的标示是否一致
if(id == threadId) then--释放锁 del keyreturn redis.call('del',key)
end
return 0

简化版的Lua脚本内容如下:

--比较线程标示与锁中的标示是否一致
if(redis.call('get',KEYS[1]) == ARGV[1]) then--释放锁 del keyreturn redis.call('del',KEYS[1])
end
return 0

在resources下创建unlock.lua,会提示下载一个plugins点击install,然后只需要下载一个EmmyLua即可,实测如果下载了多个Lua相关的插件会产生冲突,最终导致IDEA打不开,这真是血泪的教训!

 在SimpleRedisLock中写入如下的代码,因为我们希望的是在一开始就将Lua的脚本加载好,而不是等到要调用释放锁的时候再去加载Lua脚本,所以采用静态变量和静态代码块,这些部分在类初始化的时候就会被加载:

private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
static {UNLOCK_SCRIPT = new DefaultRedisScript<>();UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));UNLOCK_SCRIPT.setResultType(Long.class);
}

在SimpleRedisLock类的unlock方法中写入如下的代码:

@Override
public void unlock() {stringRedisTemplate.execute(UNLOCK_SCRIPT,Collections.singletonList(KEY_PREFIX+name),ID_PREFIX + Thread.currentThread().getId());
}

在程序1和程序2的下面这个位置打上断点:

在测试API中测试访问如下的URL:

http://localhost:8080/api/voucher-order/seckill/14

分别测试秒杀优惠券1和2: 

 

在Redis中能看到程序1获取锁成功,然后直接把lock锁删掉,模拟超时释放的情况:

然后让程序2往下走一步,可以看到程序2获取到了锁

然后可以直接放行程序1,会看到结果是程序2加的锁没有被删除。

最后放行程序2,会看到程序2加的锁被删除。

总结:

基于Redis的分布式锁的实现思路:

1.利用set nx ex获取锁,并设置过期时间,保存线程标示。

2.释放锁时先判断线程标示是否与自己一致,一致则删除锁。

特性:

1.利用set nx满足互斥性。

2.利用set nx保障故障时锁依然能够释放,避免死锁,提高安全性。

3.利用Redis集群保障高可用和高并发的特性。

 P41 分布式锁 Redisson功能介绍

目前基于setnx实现的分布式锁存在以下几个问题:

1.不可重入:同一线程无法多次获取同一把锁。

2.不可重试:获取锁只尝试一次就返回false,没有重试机制。

3.超时释放:锁超时释放虽然可以避免死锁,但如果是业务执行耗时较长,也会导致锁释放存在安全隐患。

4.主从一致性:如果Redis提供了主从集群,主从同步存在延迟,当主节点宕机时,如果从节点还未同步主节点中的锁数据,则会出现锁信息的不一致。

Redisson是一个在Redis的基础上实现的Java驻内存数据网格。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中包含了各种分布式锁的实现。

P42 分布式锁 Redisson快速入门

第1步,先引入依赖:

<!--redisson-->
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version>
</dependency>

第2步,在config包下创建RedissonConfig类,写入如下代码:

@Configuration
public class RedissonConfig{@Beanpublic RedissonClient redissonClient(){//配置Config config = new Config();config.useSingleServer().setAddress("redis://127.0.0.1:6379").setPassword("");//创建RedissonClient对象return Redisson.create(config);}
}

第3步,引入RedissonClient,调用getLock获取锁对象,然后用tryLock获取锁。

 

第4步,启动服务

发送下面的请求:

在执行释放锁的语句前,可以看到Redis中有锁的记录:

用jmeter来测试,可以发现没有出现并发安全问题:

P43 分布式锁 Redisson的可重入锁原理

ReentrantLock可重入锁的原理:获取锁的时候在判断这个锁已经被占有的情况下,会检查占有锁的是否是当前线程,如果是当前线程,也会获取锁成功。会有一个计数器记录重入的次数。

会通过下面的结构来记录某个线程重入了几次锁。

每释放一次锁采用的策略是把重入次数减1。

加锁和释放锁是成对出现的,因此当方法执行到最外层结束时,重入的次数一定会减为0。

1.是否存在锁

2.存在锁,判断是否是自己的。

是,锁计数+1。

不是,获取锁失败。

3.不存在锁

获取锁,添加线程标示。

Redisson底层可重入锁加锁的逻辑:

Redisson底层可重入锁解锁的逻辑:

 P44 分布式锁 Redisson的锁重试和WatchDog机制

下面是对含有waitTime(等待时间)的tryLock的跟踪:

看门狗超时时间是30秒

subscribeFuture.await等待的是释放锁的通知,如果future在指定时间内获得,返回true,等待的是time的时间,time是锁的剩余最大等待时间。

如果超时返回false,然后会进到cancel里,调用unsubscribe方法,取消订阅。

不是无休止的忙等机制,而是只有当锁释放后获得通知后才进行加锁尝试,在没收到通知前是被阻塞状态。

下面是定时更新锁的有效期的逻辑:

相当于设置了一个定时任务每隔10秒重置一次有效期。

定时任务的结束是在解锁的逻辑当中:

获取锁机制:

1.判断ttl是否为null

        1.1 为null,获取锁成功(涉及自动更新锁过期时间),判断leaseTime是否为-1

                1.1.1 为-1自动开启看门狗机制,定时更新锁的过期时间

                        看门狗默认30秒,每隔10秒会更新一次过期时间。

                1.1.2 不为-1返回true

        1.2 不为null,获取锁失败(涉及获取锁的失败重试),判断剩余等待时间是否大于0

                1.2.1 大于0,订阅并等待释放锁的信号

                        在受到释放信号后会判断是否超时,如未超时继续尝试获取锁

                1.2.2 不大于0,获取锁失败

释放锁机制:

1.尝试释放锁,判断是否成功

        1.1 释放成功。

                发送锁释放的消息(与获取锁的失败重试关联)

                取消看门狗机制(与自动更新锁过期时间关联)

        1.2 释放失败。返回异常。

Redisson是如何解决可重入问题、获取锁的失败重试、锁超时释放问题的?

可重入问题:利用哈希表记录线程id和重入次数。

获取锁的失败重试:利用消息订阅和信号量方式实现获取锁失败时的等待、唤醒和锁的重试获取。

锁超时释放:利用看门狗机制,每隔一段时间,重置超时时间。

P45 分布式锁 Redissson的multiLock原理

主节点负责写,从节点负责读,主节点和从节点间需要同步,会存在延迟。

如果主节点宕机,会从从节点中选拔一个新的节点作为主节点。如果主从同步尚未完成,会出现锁失效的问题。

现在在所有主节点中都存放一份锁,要求一个线程必须从所有主节点中获取锁,才算真正获取锁。

假如此时有一个主节点宕机,恰好主从同步没有完成,此时有其它线程趁虚而入获取到了新主节点的锁,但因为没能获取其它主节点的锁,因此也是获取锁失败的。

这种锁叫作联锁。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/307961.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL——查询数据的处理

一、并列 连接两个数据列的值&#xff0c;并进行输出的格式化处理&#xff08;显示为一种统一的格式&#xff09; concat( 列 1 格式化字 符 ) mysql> select concat(vend_name, vend_country) from vendors; --------------------------------- | concat(vend_name, ve…

C++使用类

运算符重载 C允许将运算符重载扩展到用户定义的类型&#xff0c;C将会根据操作数的数目和类型来决定使用哪种操作&#xff0c;运算符重载的格式如下: operatorop(argumet-list) 即由关键字operator&#xff0c;运算符op&#xff0c;()里的参数列表三部分组成&#xff0c;op必…

C++---vector容器

是STL容器中的一种常用的容器&#xff0c;由于其大小(size)可变&#xff0c;常用于数组大小不可知的情况下来替代数组。vector容器与数组十分相似&#xff0c;被称为动态数组。时间复杂度为O&#xff08;1&#xff09;。 数组数据通常存储在栈中&#xff0c;vector数据通常存储…

napi系列学习进阶篇——NAPI生命周期

什么是NAPI的生命周期 我们都知道&#xff0c;程序的生命周期是指程序从启动&#xff0c;运行到最后的结束的整个过程。生命周期的管理自然是指控制程序的启动&#xff0c;调用以及结束的方法。 而NAPI中的生命周期又是怎样的呢&#xff1f;如下图所示&#xff1a; 从图上我们…

16、普通数组-除自身以外的数组乘积

思路 通过辅助数组的方式 第一个从左向右的辅助数组乘积第二次从右向左的辅助数组乘积对于0<i<N-1 他的数组乘积就是左边的数组乘积*右边数组乘积然后再分类讨论i0 就是右边1-N-1的数组乘积iN-1就是左边从N-2到0的数组乘积 代码如下&#xff1a; class Solution {pub…

开发日志2024-04-12

开发日志2024/04/12 1、分店月业绩和年业绩都需要添加为真实数据 **开发思路&#xff1a;**分店下所属的技师的业绩总和 代码实现&#xff1a; 前端 无 后端 //TODO 将技师多对应的积分累加到他所属的分店的月/年累计业绩销量中//TODO 查询技师所对应的分店地址String f…

【深度学习】图像超分辨

案例 7&#xff1a;图像超分辨 相关知识点&#xff1a;生成对抗网络、图像处理&#xff08;PIL&#xff09;和可视化&#xff08;matplotlib&#xff09; 1 任务目标 1.1 任务和数据简介 ​ 本次案例将使用生成对抗网络来实现 4 倍图像超分辨任务&#xff0c;输入一张低分辨…

中级物流师、高级物流师资格认证考试大纲《物流管理实务》

物流管理实务 第一章 物流市场调查 一、市场调查基本知识 二、物流市场调研 三、物流市场预测 四、物流市场调研报告 第二章 仓库规划与设计 一、仓储规划概述 二、仓库规模和数量规划 三、仓库选址规划 四、仓库的结构与布局 五、自动化立体仓库的规划与设计 第…

微信小程序报错——“errno“: 600001, “errMsg“: “request:fail -2:net::ERR_FAILED“

bug现象 微信小程序体验版和真机调试 进入小程序的时候接口就出现了这个报错 "errno": 600001, "errMsg": "request:fail -2:net::ERR_FAILED" 排查 检查是证书过期还是证书链不完整 证书的信任链完整问题&#xff0c;可以在 亚数信息-SSL/TLS安…

安装ODBC方法

1、运行 搜索 ODBC数据源管理程序 32位或者 64位 2、在用户DSN或者系统DSN选择添加&#xff08;建议前者&#xff09;&#xff0c;此处以添加access数据库的odbc驱动为例 3、安装成功

Unity让地图素材遮挡人物

点击编辑/项目设置/图形&#xff0c;透明度排序模式设置自定义轴&#xff0c;透明度排序轴Y设置为1其他为0。 此时人物和地图素材的图层排序相等&#xff0c;当人物的高度大于地图素材时&#xff0c;人物则被遮挡。

锚框(anchor box)

目标检测算法通常会在输入图像中抽样大量的区域&#xff0c;然后判断这些区域中是否包含我们感兴趣的目标&#xff0c;并调整区域边界&#xff0c;从而更准确地预测目标的真实边界框&#xff08;ground-truth bounding box)。不同的模型所使用的区域抽样方法可能不同。这里我们…

三小时零基础入门微信扫码点餐小程序 手把手带你开发一款云开发版点餐软件,店铺地图导航,外卖小程序,用户端和后厨端都有

从今天开始带领大家实现一款云开发版的点餐小程序 视频讲解&#xff1a;《云开发后台微信扫码点餐小程序cms网页管理后台》 技术选型 1&#xff0c;前端 微信小程序原生框架cssJavaScript 2&#xff0c;管理后台 云开发Cms内容管理系统web网页 3&#xff0c;数据后台 小…

【STL】list

目录 1. list的使用 1.1 list的构造 1.2 list iterator的使用 1.3 list capacity 1.4 list element access 1.5 list modifiers 1.6 list的迭代器失效 2. list的模拟实现 3. list与vector的对比 1. list的使用 1.1 list的构造 1.2 list iterator的使用 1. begin与end为…

MySQL前缀索引(3/16)

前缀索引 前缀索引&#xff1a;MySQL支持前缀索引&#xff0c;允许定义字符串的一部分作为索引。如果不指定前缀长度&#xff0c;索引将包含整个字符串。前缀索引可以节省空间&#xff0c;但可能会增加查询时的记录扫描次数&#xff08;因为会查询到多个前缀相同的数据&#x…

4.9QT

完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号和密码不匹配&#xf…

Redis数据持久化 AOF RDB

Redis数据持久化 AOF RDB 1、单点 redis 的问题2、主从复制2.1 命令传播 3、Redis的持久化3.1 AOF写回策略重写机制后台重写 3.2 RDB&#xff08;默认方式&#xff09;RDB 方式&#xff1a;执行快照时&#xff0c;数据能被修改吗&#xff1f;RDB 方式总结 3.3 RDB 和 AOF 组合&…

【springboot开发】MVC和SSM

前言&#xff1a;关于MVC和SSM基本内容的梳理&#xff0c;以及两者之间的关系。 文章目录 1. 三层架构2. MVC3. SSM 1. 三层架构 三层架构是指&#xff1a; 视图层view&#xff08;表现层&#xff09;: 用于显示数据和接收用户输入的数据&#xff0c;为用户提供一种交互式操作…

684. 冗余连接

684. 冗余连接 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a;错误经验吸取 原题链接&#xff1a; 684. 冗余连接 https://leetcode.cn/problems/redundant-connection/description/ 完成情况&#xff1a; 解题思路&#xff1a; 这段…

[react优化] 避免组件或数据多次渲染/计算

代码如下 点击视图x➕1,导致视图更新, 视图更细导致a也重新大量计算!!这很浪费时间 function App() {const [x, setX] useState(3)const y x 2console.log(重新渲染, x, y);console.time(timer)let a 0for (let index 0; index < 1000000000; index) {a}console.timeE…