分布式系统:缓存与数据库一致性问题

前言

缓存设计是应用系统设计中重要的一环,是通过空间换取时间的一种策略,达到高性能访问数据的目的;但是缓存的数据并不是时刻存在内存中,当数据发生变化时,如何与数据库中的数据保持一致,以满足业务系统要求,本篇将给出具体分析。

image.png

一致性分类

  • 强一致性:这种一致性级别是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大,这种情况比如秒杀系统,商家后台,他会设置秒杀商品,参与秒杀活动,一旦说他参与了秒杀活动,商品的库存本来是在数据库里的,此时必须直接被加载到缓存里,缓存立马就要可以被使用。
  • 弱一致性:这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态
  • 最终一致性:最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型,比如微博的粉丝数,页面每天的访问数

缓存更新机制

缓存的更新,一般分为被动更新与主动更新,被动更新是指缓存在有效期到后,被淘汰。

被动更新如下步骤:
step1: 发起方查数据,缓存中没有,从数据库中获取,并写入缓存,同时设置过期时间 t;
step2: 在 t 内,所有的查询,都由缓存提供,所有的写,直接写数据库;
step3: 当缓存数据到过期时间 t 后,缓存数据失效。后面的查询,回到了第 1 步。

主动更新,一般为调用方发起缓存与数据库同时更新,缓存分为删除、更新,数据库分为更新,通过组合与先后顺序,分为如下四种情况:
更新缓存、更新数据库更新数据库,更新缓存删除缓存,更新数据库更新数据库,删除缓存

更新缓存、更新数据库

这种情况,当缓存更新成功,数据库更新不成功时,数据不一致的风险比较高,所以一般不采用

更新数据库、更新缓存

当更新完数据库,缓存的加载前需要通过大量复杂计算才能得出缓存的值,不仅让发起方阻塞,影响性能;而且如果缓存命中率不高,很少使用,更浪费前期的复杂计算成本与缓存空间,这里就不符合懒加载的设计思想,故一般也不采用

删除缓存、更新数据库

如图所示,当两个调用方线程高并发访问的情况下,A 线程先删除缓存,再更新数据库,此过程时间较长,B 线程在 A 删除缓存后,迅速读取缓存,因缓存每命中,从数据库中读取再加载缓存,此时缓存还是旧值,等 A 线程更新完数据库后,发现又出现数据不一致的现象。

image.png

一般大概率情况下,出现此根源的原因是读比写快,所以这种一般也不采用,如果非得采用,需要在写完数据库之后延迟一段时间再删除一次缓存,也就是我们熟知的 延时双删,延迟多久呢,一般看数据库的更新时长来决定,此做法也会带来系统吞吐量下降

Cache-Aside

也叫做旁路缓存模式,流程就是先更新数据库,再删除缓存,虽然这种方式也会带来不一致的情况,比如如下场景:

image.png

前提:缓存无数据,数据库有数据。
A:查询,B:更新
过程如下:
step1: A 查缓存,无数据,去读数据库,旧值;
step2: B 更新数据库为新值;
step3: B 删除缓存;
step4: A 将旧值写入缓存。

该场景最终也会出现不一致,产生的根源是是读比写慢,这种是小概率事件,一般很少出现,如果非要解决这种情况,还是上面说的延迟双删

Read/Write Through

上面的方式,数据库是缓存的来源,主导是数据库,而  Read/Write Through模式,相当于缓存占主导。在 cache-aside 模式中,我们的应用代码需要维护两个数据存储,一个是缓存(Cache),一个是数据库(Repository)。而 Read/Write Through 做法是把更新数据库(Repository)的操作由缓存自己代理了,所以,对于应用层来说,就简单很多了。可以理解为,应用认为后端就是一个单一的存储,而存储自己维护自己的 Cache。

Read Through

Read Through  就是在查询操作中更新缓存,也就是说,当缓存失效的时候(过期或 LRU 换出),Cache Aside 是由调用方负责把数据加载入缓存而 Read Through 则用缓存服务自己来加载,从而对应用方是透明的

image.png

这个简要流程和 Cache-Aside 很像,其实Read-Through就是多了一层Cache-Provider,流程如下:

image.png

Read-Through 实际只是在Cache-Aside之上进行了一层封装,它会让程序代码变得更简洁,同时也减少数据源上的负载

Write Through

Write Through,和 Read Through 相仿,不过是在更新数据时发生。当有数据更新的时候,如果没有命中缓存,直接更新数据库,然后返回。如果命中了缓存,则更新缓存,然后再由 Cache 自己同步更新数据库

image.png

值得注意的是,该方案在实现过程中,程序启动时,需将数据库的数据, 提前放到缓存中,不能等启动完成,再放缓存中。

Read Through/Write Through 策略的特点是由缓存节点而非应用程序来和数据库打交道,在我们开发过程中相比 Cache Aside 策略要少见一些,原因是我们经常使用的分布式缓存组件,无论是 Memcached 还是 Redis 都不提供写入数据库和自动加载数据库中的数据的功能。而我们在使用本地缓存的时候可以考虑使用这种策略。

Write Behind

Write Behind 又叫 Write Back。底层思想就是在更新数据的时候,只更新缓存,不更新数据库,而我们的缓存会异步地批量更新数据库。这个设计的好处就是让数据的 I/O 操作速度飞快(因为是直接操作内存),同时带来吞吐量大幅上升;因为异步,Write Behind 还可以合并对同一个数据的多次操作,所以性能的提高是相当可观的。

image.png

但是,其带来的问题是,数据不是强一致性的,而且可能会丢失(我们知道 Unix/Linux 非正常关机会导致数据丢失,就是因为这个事)。在软件设计上,我们基本上不可能做出一个没有缺陷的设计,就像算法设计中的时间换空间,空间换时间一个道理,有时候,强一致性和高性能,高可用和高性性是有冲突的。如果说软件功能模块的思维是逻辑与实现,那么软件架构设计的思维是权衡与取舍

这种方式下,缓存和数据库的一致性不强,对一致性要求高的系统要谨慎使用。但是它适合频繁写的场景,MySQL 的InnoDB Buffer Pool 机制就使用到这种模式。

Write Behind 实际应用

按照实际架构应用层面落地参考方案,流程图如下(以用户发表视频为例)

image.png

按照这种方案,正常来说只要 10 分钟内数据正常写完就没问题,可以实现最终一致性,但是一旦超出 10 分钟,就会缓存失效,造成缓存不一致

如果出现这种 kafka 消费入库失败,则会触发报警系统,看具体是什么问题,基本上 kaka 入库失败只有两种情况,一种是出错了,另外一种是消费能力不够,那么直接扩容即可

后记

说到底这个问题根本没有通用方案,需要根据场景做权衡,比如类似于微博这样高并发场景,那么上边只要涉及删除缓存的方案基本都很难实现,因为很可能删除缓存的下一时间热点数据直接全部打在数据库上,整个服务直接崩溃

然后本质上缓存和数据库的更新就不是一个原子操作,想要彻底实现强一致性,可以了解下分布式事务或是其他强一致性协议,比如说两阶段提交协议 —— prepare, commit/rollback,比如 Java 7 的 XAResource,还有 MySQL 5.7 的 XA Transaction,有些 cache 也支持 XA,比如 EhCache

参考链接

  • 美团二面:Redis 与 MySQL 双写一致性如何保证? - 掘金 (juejin.cn)
  • 分布式缓存--缓存与数据库一致性方案 - 小猪爸爸 - 博客园 (cnblogs.com)
  • 如何保障 MySQL 和 Redis 的数据一致性? | 二哥的 Java 进阶之路 (javabetter.cn)
  • 三种缓存策略:Cache Aside 策略、Read/Write Through 策略、Write Back 策略
  • 分布式系统中的缓存与数据库一致性

本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/310125.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux shell编程学习笔记46:awk命令的由来、功能、格式、选项说明、版权、版本

0 前言 在编写Linux Shell脚本的过程中,我们经常要对Linux命令执行的结果进行分析和提取,Linux也在文本分析和提取这方面提供了不少的命令。比如我们之前研究过的cut命令。 Linux shell编程学习笔记43:cut命令https://blog.csdn.net/Purple…

史上最全excel导入功能测试用例设计(以项目为例)

web系统关于excel的导入导出功能是很常见的,通常为了提高用户的工作效率,在维护系统中的一些数据的时候,批量导入往往比一个一个添加或者修改快很多。针对导入功能的测试,往往会有很多种情况,现在针对平时项目中遇到的…

Excel·VBA二维数组S形排列

与之前的文章《ExcelVBA螺旋数组函数》将一维数组转为二维螺旋数组 本文将数组转为S形排列的二维数组,类似考场座位S形顺序 Function S形排列(ByVal arr, ByVal num_rows&, ByVal num_cols&, Optional ByVal mode$ "row")将数组arr转为num_rows…

Home Assistant OS转 Hassio Supervisor(docker 版本)

这是一个失败案例,请忽略。 原因 HAOS缺点:系统不是很好用,无法满足我在上面使用python开发插件的小需求(或许有方法满足,但是我没找到)。 HAOS优点:方便安装,配置非常方便。 数据…

UE5学习日记——实现自定义输入及监听输入,组合出不同的按键输入~

UE5的自定义按键和UE4有所不同,在这里记录一下。 本文主要是记录如何设置UE5的自定义按键,重点是学会原理,实际开发时结合实际情况操作。 输入映射 1. 创建输入操作 输入操作并不是具体的按键映射,而是按键的激活方式&#xff0…

面试官:说一说CyclicBarrier的妙用!我:这个没用过...

写在开头 面试官:同学,AQS的原理知道吗? 我:学过一点,抽象队列同步器,Java中很多同步工具都是基于它的… 面试官:好的,那其中CyclicBarrier学过吗?讲一讲它的妙用吧 我&…

音乐文件逆向破解

背景 网易云等在线音乐文件的加密源码都按照一定的规则加密,通过对音乐文件的源码分析转化,有望实现对加密文件的解密 实现内容 实现对加密音乐文件的解密 实现对无版权的音乐文件的转化 实现环境 010editor 010 Editor是一个专业的文本编辑器和十六…

FFmpeg: 自实现ijkplayer播放器--04消息队列设计

文章目录 播放器状态转换图播放器状态对应的消息: 消息对象消息队列消息队列api插入消息获取消息初始化消息插入消息加锁初始化消息设置消息参数消息队列初始化清空消息销毁消息启动消息队列终止消息队列删除消息 消息队列,用于发送,设置播放…

破译验证码reCAPTCHA 之 打码平台

由于登录需要验证码,除了日常的字符串+数字,此时就需要用第三方插件进行破译。 reCaptcha是Google公司的验证码服务,方便快捷,改变了传统验证码需要输入n位失真字符的特点。 1. reCAPTCHA 初识 reCaptcha是Google公司…

1、IPEX-LLM(原名BigDL-LLM)环境配置

IPEX-LLM 是一个为Intel XPU (包括CPU和GPU) 打造的轻量级大语言模型加速库,在Intel平台上具有广泛的模型支持、最低的延迟和最小的内存占用。 您可以使用 IPEX-LLM 运行任何 PyTorch 模型(例如 HuggingFace transformers 模型)。在运行过程中…

结合创新!ResNet+Transformer,高性能低参数,准确率达99.12%

今天给各位介绍一个发表高质量论文的好方向:ResNet结合Transformer。 ResNet因其深层结构和残差连接,能够有效地从图像中提取出丰富的局部特征。同时,Transformer的自注意力机制能够捕捉图像中的长距离依赖关系,为模型提供全局上…

世界需要和平--中介者模式

1.1 世界需要和平 "你想呀,国与国之间的关系,就类似于不同的对象与对象之间的关系,这就要求对象之间需要知道其他所有对象,尽管将一个系统分割成许多对象通常可以增加其可复用性,但是对象间相互连接的激增又会降低…

MySQL中的存储过程详解(上篇)

使用语言 MySQL 使用工具 Navicat Premium 16 代码能力快速提升小方法,看完代码自己敲一遍,十分有用 拖动表名到查询文件中就可以直接把名字拉进来中括号,就代表可写可不写 目录 1.认识存储过程 1.1 存储过程的作用 1.2 存储过程简介…

【word】文档标题如何自动编号

我在写一个word文档的时候,每一级标题的格式都设置好了,包括字体,大小等等,但是如何自动编号呢? 在写中期报告的时候,我对每一级标题的格式都创建了一个单独的样式,像这样: 对于每一…

数据类型知识

1,介绍 根据数据所占的空间不同,把数据分为不同的数据类型 js的变量数据类型是在程序运行中,靠等号右边数值的值来判断的 js动态变量,里面的数据类型是可以变化的 2.数据类型 1.简单数据类型 程序里面,数字前面有…

plotly绘图——热力图

文章目录 介绍热力图基础热力图代码解释 多热力图代码解释 显示数字的热力图代码解释 介绍 plotly是一个易于使用,功能强大的python绘图库,用于构建可交互式的图表(可以自行运行后使用鼠标拖拽图片试试),本系列文章将介…

基于springboot+vue的企业人事管理设计与实现

前言 基于Java的企业人事管理设计与实现,可以让用户在最短的时间里享受到最好的服务;而开发本系统,又能够提高系统整体工作水平,简化工作程序,这对管理员和员工来说都是一件非常乐意的事情。 本系统针对基于Java的企…

(一)Jetpack Compose 从入门到会写

基本概念 Compose 名称由来 众所周知,继承在功能拓展上表现的很脆弱,容易类、函数爆炸,通过代理和包装进行组合会更健壮。 Compose 意为组合,使用上也是把 Compose 函数以 模拟函数调用层级关系的方式 组合到一起,最终…

Vue.js------vue基础

1. 能够了解更新监测, key作用, 虚拟DOM, diff算法2. 能够掌握设置动态样式3. 能够掌握过滤器, 计算属性, 侦听器4. 能够完成品牌管理案例 一.Vue基础_更新监测和key 1.v-for更新监测 目标:目标结构变化, 触发v-for的更新 情况1: 数组翻转情况2: 数组截取情况3…

记录--病理切片图像处理

简介 数字病理切片,也称为全幻灯片成像(Whole Slide Imaging,WSI)或数字切片扫描,是将传统的玻片病理切片通过高分辨率扫描仪转换为数字图像的技术。这种技术对病理学领域具有革命性的意义,因为它允许病理…