参会记录|全国多媒体取证暨第三届多媒体智能安全学术研讨会(MAS‘2024)

前言:2024年4月13日上午,我与实验室的诸位伙伴共聚江西南昌的玉泉岛大酒店,参加了为期一天半的全国多媒体取证暨第三届多媒体智能安全学术研讨会(MAS’2024)。本届学术研讨会由江西省计算机学会、江西省数字经济学会主办,南昌大学承办。来自国内多媒体取证与人工智能安全的专家、学者代表等共计100余人次相聚豫章故郡,共同参与此次会议。以下为本人的会议笔记。


特邀报告 * 5场

智能化恶意软件检测与对抗 —— 纪守领

恶意软件检测是一个二分类任务,主要面临数据和模型两个层面的困难:

  • 数据层面:样本分布不均衡、样本标签不准确(Virus Total 标注工具)
  • 模型层面:恶意软件种类多、软件特征提取过程依赖强

报告中提到恶意软件检测的后门攻击、逃逸攻击以及鲁棒训练都是AI安全领域的分支,被迁移到恶意软件检测这个应用场景同样适用。

智能驱动的物联网安全 —— 朱浩瑾

这个报告关注:1)移动设备(如手机)以及车联网设备的语音识别及用户认证;2)CV领域基于隐写的后门攻击,TDSC 2021;3)NLP模型的供应链安全,CCS 2021;4)基于内生指纹的数据集与模型鉴权,CVPR 2022,NDSS 2023

大模型安全与隐私:现状及挑战 —— 李进

这个报告讲了一个综述,从数据、模型和输出内容三个角度阐述了面临的安全与隐私的挑战。

在这里插入图片描述

隐私侵犯程度探测工具 ProPILE, NeurIPS 2023

针对LLM的复合式后门攻击:Composite Backdoor Attacks Against Large Language Models, arXiv 2024.

神经网络后门的检测与利用 —— 陈恺

从 Neural Cleanse, S&P 2019 出发,提出模型后门新型检测方法 Neural Sanitizer, TIFS 2024

基于深度学习的侧信道分析 —— 沈剑

侧信道分析这个概念不太了解,报告上说是衡量密码技术的绝对安全。POI(Point of Interest)概念出现。


学术报告 * 10场

基于语义解耦的AI生成图像取证技术研究 —— 丁峰,南昌大学

主要讲deepfake的,指出不同语义的伪程度(含伪量)不尽相同

非凸优化的定性分析 —— 李晓龙,北交大

太高深了,没怎么听懂……

对抗性取证 —— 王金伟,南信大

主动对抗性取证

  • 基于优化式攻击的对抗可见水印技术,JISA 2024
  • 基于AWFM框架的不可见对抗水印技术,TOMM 2024

PS:可以通过 Grad-CAM 查找嵌入位置

文本内容安全 —— 刘玉玲,湖南大学

刘老师分享了一些智慧政务,智慧城市,智慧司法的相关工作,挺有意思的

浅谈融合密码技术的人工智能模型版权保护研究 —— 杨文元,中山大学

杨老师报告内容基本围绕联邦学习场景。

水印的作用:1)版权验证;2)访问控制

  • 版权验证:基于零知证明的联邦学习所有权认证,arXiv 2023,

Zero Knowledge:知道有版权,但是不知道版权是什么。

  • 访问控制:
    • Passport(NeurIPS 2019);
    • FedIPR(TPAMI 2023)
    • FedSOV(arXiv 2023)

避免节点之间的水印冲突;秘密信息互斥;分级授权的概念

生成模型性能无损水印技术 —— 陈可江

当可证安全隐写遇上生成模型:
在这里插入图片描述

  • Provably Secure Generative Steganography Based on Autoregressive Model(IWDW 2018)
  • Distribution-Preserving Steganography Based on Text-to-Speech Generative Models(TDSC 2021)
  • Performance-lossless Black-box Model Watermarkin(arXiv 2023)

陈老师还讲了一些模型水印相关工作,比如 Stable Signature(ICCV 2023),TreeRing(NIPS 2023),以及他们组做的 Gaussian Shading(CVPR 2024)……

其他报告因为时间原因没有来得及听:

  • 无监督范式下的深度伪造人脸检测 —— 乔通,杭州电子科技大学
  • 迈向可信赖的人脸生理感知和安全系统 —— 余梓彤,大湾区大学
  • 音频主动标识和被动取证研究 —— 苏兆品,合肥工业大学
  • 图像隐写与取证的新进展 —— 李伟祥,深圳大学

后记:去年同时期参会的时候还处于懵懵懂懂的状态,换方向之后积累了研究基础,数场报告听下来收获更大。个人感觉,还是要有一定的学术积淀再去听报告……不然更多是浪费时间。(当然,如果是为了去Social,则另当别论)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/310717.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理: 第二十七章LLM训练超参数

前言: LLM微调的超参大致有如下内容,在本文中,我们针对这些参数进行解释 training_arguments TrainingArguments(output_dir"./results",per_device_train_batch_size4,per_device_eval_batch_size4,gradient_accumulation_steps2,optim"adamw_8bi…

【翻译】再见, Clean Code!

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 【翻译】再见, Clean Code!正文那是一个深夜次日早晨这只是一个阶段 【翻译】再见…

面试八股——JVM★

类加载 类加载器的定义 类加载器的类别 类装载的执行过程 类的装载过程: 加载: 验证: 准备: 这里设置初始值并不是传统意义的设置初始值(那个过程在初始化阶段)。 解析: 初始化: …

微信小程序|自定义弹窗组件

目录 引言小程序的流行和重要性自定义弹出组件作为提升用户体验和界面交互的有效方式什么是自定义弹出组件自定义弹出组件的概念弹出层组件在小程序中的作用和优势为什么需要自定义弹出组件现有的标准弹窗组件的局限性自定义弹出组件在解决这些问题上的优势

基于Springboot的校园闲置物品交易网站

基于SpringbootVue的校园闲置物品交易网站的设计与实现 开发语言:Java数据库:MySQL技术:SpringbootMybatis工具:IDEA、Maven、Navicat 系统展示 用户登录 首页 商品信息展示 商品资讯 后台管理 后台首页 用户管理 商品类型管…

《系统架构设计师教程(第2版)》第9章-软件可靠性基础知识-04-软件可靠性设计

文章目录 1. 容错设计技术1.1 恢复块设计1.2 N版本程序设计1.3 冗余设计 2. 检错技术3. 降低复杂度设计4. 系统配置中的容错技术4.1 双机热备技术4.1.1 双机热备模式4.1.2 双机互备模式4.1.3 双机双工 4.2 服务器集群技术 1. 容错设计技术 1.1 恢复块设计 恢复块设计 选择一组…

用于 SQLite 的异步 I/O 模块(二十四)

返回:SQLite—系列文章目录 上一篇:SQLite的PRAGMA 声明(二十三) 下一篇:SQLite、MySQL 和 PostgreSQL 数据库速度比较(本文阐述时间很早比较,不具有最新参考性)(二…

亚马逊、沃尔玛自养号测评技术解析:如何降低潜在风险

亚马逊等电商平台在全球范围内迅速扩张,竞争愈发激烈。为提升产品排名和销量,众多卖家选择采用自养号测评的策略。然而,自养号测评技术并非完美无缺,它存在着一定的技术局限性。由于缺乏对自养号原理及底层环境搭建的深入理解&…

华为配置通过流策略实现流量统计

配置通过流策略实现流量统计示例 组网图形 图1 配置流策略实现流量统计组网图 设备 接口 接口所属VLAN 对应的三层接口 IP地址 SwitchA GigabitEthernet1/0/1 VLAN 10 - - GigabitEthernet1/0/2 VLAN 20 - - GigabitEthernet1/0/3 VLAN 10、VLAN 20 - - S…

MapReduce原理简介

MapReduce 是一种用于处理大规模数据集的编程模型和计算框架,最初由 Google 提出,并被 Hadoop 等开源项目广泛应用。它主要包括两个阶段:Map 阶段和 Reduce 阶段。下面是 MapReduce 的基本原理: 图示不错 MapReduce 的基本原理&…

Java的Future机制详解

Java的Future机制详解 一、为什么出现Future机制二、Future的相关类图2.1 Future 接口2.2 FutureTask 类 三、FutureTask的使用方法四、FutureTask源码分析4.1 state字段4.2 其他变量4.4 构造函数4.5 run方法及其他 一、为什么出现Future机制 常见的两种创建线程的方式。一种是…

开源模型应用落地-chatglm3-6b-gradio-入门篇(七)

一、前言 早前的文章,我们都是通过输入命令的方式来使用Chatglm3-6b模型。现在,我们可以通过使用gradio,通过一个界面与模型进行交互。这样做可以减少重复加载模型和修改代码的麻烦, 让我们更方便地体验模型的效果。 二、术语 2.…

《剑指 Offer》专项突破版 - 面试题 110 : 所有路径(C++ 实现)

题目链接:所有路径 题目: 一个有向无环图由 n 个节点(标号从 0 到 n - 1,n > 2)组成,请找出从节点 0 到节点 n - 1 的所有路径。图用一个数组 graph 表示,数组的 graph[i] 包含所有从节点 …

组件与组件之间的传递-事件总线

两个组件之间的数据传递(属于非父子组件通讯) 当项目中只是两个组件的少量数据传递时使用事件总线这种方法会比较方便,但当遇到大量数据传递时推荐使用vuex 思路 组件与组件之间不能直接传递,这是候可以创建一个EventBus.js文件…

ELK日志分析系统之Zookeeper

一、Zookeeper简介 ZooKeeper是一种为分布式应用所设计的高可用、高性能且一致的开源协调服务,它提供了一项基本服务:分布式锁服务。分布式应用可以基于它实现更高级的服务,实现诸如同步服务、配置维护和集群管理或者命名的服务。 Zookeepe…

力扣:49. 字母异位词分组

知识点: 散列函数 散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位: 1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)key或H&a…

计算机网络 Cisco路由器基本配置

一、实验内容 1、按照下表配置好PC机IP地址和路由器端口IP地址 2、配置好路由器特权密文密码“abcd+两位班内序号”和远程登录密码“star” 3、验证测试 a.验证各个接口的IP地址是否正确配置和开启 b.PC1 和 PC2 互ping c.验证PC1通过远程登陆到路由器上&#…

C#医学实验室/检验信息管理系统(LIS系统)源码

目录 检验系统的总体目标 LIS主要包括以下功能: LIS是集:申请、采样、核收、计费、检验、审核、发布、质控、耗材控制等检验科工作为一体的信息管理系统。LIS系统不仅是自动接收检验数据,打印检验报告,系统保存检验信息的工具&a…

初级软件测试常见问题

1.JMeter (1)在http请求的时候,消息体数据中的数据需要用{}和“”标记起来,变量要用${}括起来。 (2)在响应断言的时候,要根据测试模式输出的内容来改变测试字段,假如输出错误可以把…

系统学c#:1、基础准备(软件下载与安装)

一、Vs软件下载与安装 访问Visual Studio官方网站: https://visualstudio.microsoft.com/zh-hans/downloads 下载Visual Studio 运行exe文件,点击“继续” 初始文件安装完成后选择我们需要安装的项,并勾选好必要的单个组件,设…