GPT+Python近红外光谱数据分析

原文链接:GPT+Python近红外光谱数据分析icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247603913&idx=1&sn=6eb8fd6f1abcdd8160815997a13eb03d&chksm=fa82172ecdf59e389a860547a238bb86c7f38ae3baa14e97c7490a52ef2a2c206f88d503a5eb&token=1727551034&lang=zh_CN#rd第一:ChatGPT入门基础

1、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store简介

图片

第二:ChatGPT提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

图片

第三:ChatGPT助力信息检索与总结分析
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

图片

第四:ChatGPT助理论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

图片

第五:ChatGPT助力python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

图片

第六:ChatGPT助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板

图片

第七:ChatGPT助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板

图片

第八:ChatGPT助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分? BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板

图片

第九:ChatGPT助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题? SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板

图片

第十:ChatGPT助力决策树,随机森林,Adaboost,XGBoost和LighGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

3、Bagging与Boosting集成策略的区别

4、Adaboost算法的基本原理

5、Gradient Boosting Decision Tree (GBDT)模型的基本原理

6、XGBoost与LightGBM简介

7、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板

图片

第十一:ChatGPT助理遗传算法近红外光谱分析

1、群优化算法

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板

图片

图片

第十二:ChatGPT助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板

6、案例演示:1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

图片

第十三:ChatGPT助力pytorch入门基础

1、深度学习框架(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

图片

第十四:ChatGPT助力卷积网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系

2、卷积神经网络的基本原理

3、卷积神经网络参数调试技巧

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板

7、案例演示:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于一维卷积神经网络的近红外光谱模型建立;(5)基于二维卷积神经网络的红外图像分类识别模型建立

图片

图片

第十五:ChatGPT助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

图片

第十六:ChatGPT助力自编码近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板

5、案例演示:1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

图片

第十七:ChatGPT助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板

图片

第十八:ChatGPT助理深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/324102.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【WPF学习笔记(一)】WPF应用程序的组成及Window类介绍

WPF应用程序的组成及Window类介绍 WPF应用程序的组成及Window类介绍前言正文1、WPF介绍1.1 什么是WPF1.2 WPF的特点1.3 WPF的控件分类 2、XAML介绍2.1 XAML的定义2.2 XAML的特点2.3 XAML的命名空间 3、WPF应用程序组成3.1 App.config3.2 App.xaml3.3 App.xaml.cs3.4 MainWindow…

分布式存储CephFS最佳实践

文章来源于知乎文章: 分布式存储CephFS最佳实践 背景 近日,一朋友说他们企业内部想落地CephFS,让我帮忙写一份能落地的CephFS最佳实践。然后就顺便把文章整理到了这里。因能力水平以及认知有限,如有错漏烦请指正。 简介 CephF…

IP 地理定位神话与事实

ip地理定位是一项技术,用于通过访问设备的ip地址来获取地理位置信息,例如国家、城市、经纬度等。该技术广泛应用于网站内容自定义、广告定位、网络安全和用户分析等领域。它通过与包含ip地址和地理位置映射的大型数据库进行查询来工作,但在准…

聊聊测试团队管理

管理测试团队是一个复杂但至关重要的任务,它不仅关乎于保证软件产品的质量,还涉及到团队建设、流程优化、技能提升等多个方面。以下是一些关键策略,可以帮助您有效地管理测试团队,比如“持续培训和技术支持,明确目标&a…

99、技巧-下一个排列

这个问题要求生成一个数组的下一个排列。所谓“下一个排列”指的是,在所有数字相同但顺序不同的排列中,找出数字序列中刚好比当前序列大的下一个序列。如果当前序列已经是这些排列中的最大值,则下一个排列应该是最小的排列。 思路解释 要解…

QML 本地存储(Setting,sqlite)

Qt hello - 专注于Qt的技术分享平台 QML 原生的储存方有两种: 1,Settings 跟QWidget 中的QSettings 一样,可以简单的存储一些配置。 2,Sqlite sqlite数据库。可以存储一些复杂的数据。 一,Settings 我们以一个按钮的位…

【机器学习300问】81、什么是动量梯度下降算法?

动量梯度下降算法(Momentum)是利用指数加权移动平均的思想来实现梯度下降的算法。让我们先来回顾一下基础的梯度下降方法以及看看它有哪些不足之处。接着引出动量梯度下降算法,在理解了它的原理后看看它是如何规避之前方法的不足的。 如果不知…

Spring如何控制Bean的加载顺序

前言 正常情况下,Spring 容器加载 Bean 的顺序是不确定的,那么我们如果需要按顺序加载 Bean 时应如何操作?本文将详细讲述我们如何才能控制 Bean 的加载顺序。 场景 我创建了 4 个 Class 文件,分别命名为 FirstInitialization Se…

如何使用 ERNIE 千帆大模型基于 Flask 搭建智能英语能力评测对话网页机器人(详细教程)

ERNIE 千帆大模型 ERNIE-3.5是一款基于深度学习技术构建的高效语言模型,其强大的综合能力使其在中文应用方面表现出色。相较于其他模型,如微软的ChatGPT,ERNIE-3.5不仅综合能力更强,而且在训练与推理效率上也更高。这使得ERNIE-3…

第三节课,功能2:开发后端用户的管理接口-- postman--debug测试

一、如何使用postman 网址: https://www.postman.com/downloads/ 【Postman小白教程】五分钟学会如何使用Postman~_哔哩哔哩_bilibili postman安装使用_bowser agent在postman哪里-CSDN博客 二、下载后 登录,开始测试 2.1 关于postman 报错&#…

第十五届蓝桥杯python B组省赛

前言: 这是我第一次参加蓝桥杯,成绩并不理想,我反思了一下午,我的问题主要是知识点学不透,题目做的太少,而且学习的时候少数时间不专心,但是,我能感觉到我的学习能力并不弱&#xf…

分布式锁讲解

概括 分布式锁是一种用于在分布式系统中实现同步机制的锁。在单机系统中,我们可以使用如Java中的synchronized关键字或者 ReentrantLock来实现线程间的同步,但在分布式系统中,由于多个节点(服务器)之间的并发操作&am…

C语言实现扫雷游戏完整版

游戏介绍: 目录 游戏介绍: 游戏框架: 游戏具体功能实现: 棋盘的定义: 棋盘初始化: 棋盘打印: 棋盘布置雷: 棋盘扫雷: 爆炸展开一片: 获取周围八个…

WP Rocket插件下载:加速您的WordPress网站,提升用户体验

在互联网速度决定用户体验的今天,一个快速加载的网站对于吸引和保留访问者至关重要。WP Rocket插件,作为一款专为WordPress设计的高性能缓存插件,提供了一套完整的解决方案,帮助您优化网站性能,提升用户体验。 [WP Ro…

Linux随记(九)

一、在bclinux Euler 21.10 安装oracle19c客户端 (为了使用sqlplus 、expdp、impdp、sqlldr等指令) #环境和说明 系统:BigCloud Enterprise Linux For Euler 21.10 LTS 为了使用sqlplus 、expdp、impdp、sqlldr等指令。 下面是安装步骤 &…

力扣打卡第二天

206. 反转链表 class Solution { public:ListNode* reverseList(ListNode* head) {// //迭代法// ListNode *pre nullptr;// ListNode *curr head;// while(curr){// ListNode *next curr -> next;// curr -> next pre;// pre curr;// curr next;/…

hadoop启动后没有namenode,datanode等解决方法

之前用的是虚拟机,在虚拟机上安装的hadoop,但是后来,电脑恢复出厂设置了,什么都重新开始。就在本地安装 Linux 子系统。 但是,有时候start-dfs.sh后,jps出现错误。 像这种拒绝连接 解决办法就是如下&…

vivado新版本兼容老版本,vitis classic兼容sdk教程

new version: vivado版本2023.2 和vitisv classic 2023.2 old version: vivado 2018.3以及之前的版本 打开工程 自动升级到当前版本,选择OK 点击Yes,合并当前的目录架构 点击OK 点击Report IP status 勾选要升级的IP核,点击升级 在项目工程文件夹…

git使用注意事项事项

以下操作均在gitee平台上实现 文章目录 1、本地仓库和远程仓库有冲突2、git提交自动忽略某些文件3、git无法push提交到远程仓库 1、本地仓库和远程仓库有冲突 在web端修改了文件内容或者删除了文件,本地仓库需要重新把远程仓库拉取到本地,或者强制提交到…

信息系统架构模型_1.单机应用模式和客户机/服务器模式

1.单机应用模式(Standalone) 单机应用系统是最简单的软件结构,是指运行在一台物理机器上的独立应用程序。这些软件系统,从今天的软件架构上来讲,是很简单,是标准的单机系统。当然至今,这种复杂的…