R语言数据分析案例-巴西固体燃料排放量预测与分析

1 背景

自18世纪中叶以来,由于快速城市化、人口增长和技术发展,导致一氧化二氮(N2O)、 甲烷(CH4)和二氧化碳(CO 2)等温室气体浓度急剧上升,引发了全球变暖、海平面上 升、极端天气以及环境污染等一系列问题,严重制约了社会、经济、生态的可持续发展, 威胁人类生存与健康[1]。

由于温室气体排放增加引起的全球变暖、极 端高温和热浪、龙卷风、飓风、干旱和洪水等自然灾害成为新常态,已经成为世界各国 政府和学术界关注的焦点[ 2],因此,估算大气中CO2浓度是我们研究全球变暖等问题的 最可靠的方法,探讨CO2循环和碳源汇收支的变化规律是应对全球气候变化的关键所在。故本文针对巴西1960年-2014年固体燃料消耗产生的CO2排放量来进行分析和预测,针对特定的数据进行建模分析,最终得出相应的结论。

2 数据和方法说明

本文所运用到的数据是全球暖化数据集中的全球国家CO2排放情况表(分燃料状态)(年)其中的巴西的数据,得到数据后,对数据进行了相应的筛选,其数据展示如下:

1 1960年-2014年巴西固体燃料消耗产生的CO2排放量原始数据

SgnYear

Cntrnm

Region

IncomeGroup

Solid_CO2m

Liquid_CO2m

1960

巴西

拉丁美洲

中等偏上

4968.79

39049.88

1961

巴西

拉丁美洲

中等偏上

4682.76

41503.11

...

...

...

...

...

...

2014

巴西

拉丁美洲

中等偏上

73666.36

339028

3理论

4 实证分析

巴西固体燃料消耗产生的CO2排放量描述性统计分析

首先展示原始数据(前6行),如下图,随后进行整体数据的描述性统计分析:

表3  整体数据描述性统计

Solid_CO2m

Liquid_CO2m

min

4683

39050

1st Qu

9487

118811

median

35750

150336

mean

32212

161237

3st Qu

48522

229956

max

73666

339029

SgnYear

Cntrnm

Region

IncomeGroup

Length

55

55

55

55

calss

character

character

character

character

mode

character

character

character

character

从表3可以看出,对巴西固体和液体燃料消耗产生的CO2排放量以及其他数据进行了描述性统计,得到了最大最小值,均值以及1/4分位数和3/4分位数,其中前四个变量为非数值型变量。且下图4画出了1960年-2014年巴西固体燃料消耗产生的CO2排放量的时序图。

ARIMA模型的构建

进行ARIMA模型构建之前,要对时间序列数据纯随机性和平稳性检验。可以判断数据是否具有建模的价值以及是否适合ARIMA模型。下面对巴西固体燃料消耗产生的CO2排放量数据进行纯随机性检验和平稳性检验结果如下表4和表5:

表4  纯随机检验

滞后期数

卡方统计量

P值

滞后6期P值

234.39

0.000

滞后12期P值

350.1

0.000

下面进行自动定阶的函数,计算得到模型应该采用ARIMA(2,1,2),拟合得到模型系数:

表 7 模型定阶系数

Coefficients:

s.e.

ar1

ar2

ma1

ma2

drift

-0.1213

-0.8560

-0.1862

0.9513

1236.9922

0.1035

0.1002

0.0863

0.1673

330.2231

Sigma^2=8135344: likelihood=-505.11

Aic=1022.23 AICc=1024.01 BIC=1034.16

随后进行模型判断和误差的计算:

最后进行预测,预测3期,即未来3年巴西的巴西固体燃料消耗产生的CO2排放量,

5 结论

巴西1960年-2014年固体燃料消耗产生的CO2排放量来进行分析和预测,针对特定的数据进行建模分析,最终得出相应的结论。ARIMA模型的预测方面的还可行性,针对预测的结果,可以对政策调整和其他方面的策略判断做出相应的参考,在理论上具有一定的参考价值。

本文代码
 


dataset1<- read.xlsx("巴西不同燃料的排放量.xlsx", sheet = 1)
dataset1###首先展示数据前6行
head(dataset1,6)###随后对整体数据进行描述性添加分析
summary(dataset1)###画出1960年-2014年巴西固体燃料消耗产生的CO2排放量的时间序列图形dataset1$Solid_CO2Emission
HG_I<-ts(dataset1$Solid_CO2Emission,start=c(1960),frequency=1)
HG_I
plot(HG_I,type="o",pch=20,main="1960年-2014年巴西固体燃料消耗产生的CO2排放量时间序列图",xlab = "年份/Y",ylab="排放量",col = "green")#白噪声检验
for(i in 1:2) print(Box.test(HG_I,type = "Ljung-Box",lag=6*i))
###P值很少,很明显为非白噪声,可继续建模library(stats)
ndiffs(HG_I)
###结果显示为需要1阶差分
##但是个人看 2 阶才能平稳
diff.HG_I<-diff(HG_I,2) 
plot(diff.HG_I,main='2阶差分图')ADF2<-adf.test(diff.HG_I)  #1阶差分单位根检验
ADF2# 确定ARIMA模型中的p,q
# 这里有两种方法,一种是凭对知识点的理解通过ACF函数图和PACF函数图自行判断
# p,q的值另一种是通过软件的算法自动预测。
acf(diff.HG_I,main='差分后acf',lag.max = 12)
pacf(diff.HG_I,main='差分后pacf',lag.max = 12)###模型拟合
HG_I.fit<-auto.arima(HG_I)
HG_I.fit #模型预测
per_HG_I<-forecast(HG_I.fit,h=3)
per_HG_I
plot(per_HG_I)

巴西co2数据和BG

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/329247.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

别说废话!说话说到点上,项目高效沟通的底层逻辑揭秘

假设你下周要在领导和同事面前汇报项目进度&#xff0c;你会怎么做&#xff1f;很多人可能会去网上搜一个项目介绍模板&#xff0c;然后按照模板来填充内容。最后&#xff0c;汇报幻灯片做了 80 页&#xff0c;自己觉得非常充实&#xff0c;但是却被领导痛批了一顿。 这样的境…

景源畅信电商:抖店怎么提高店铺的权重?

在竞争激烈的电商市场&#xff0c;如何提升抖店店铺权重成为商家关注的焦点。店铺权重是决定商品搜索排名的关键因素之一&#xff0c;直接关系到店铺流量和销量。提高店铺权重并非一蹴而就&#xff0c;而是一个系统工程&#xff0c;需要从多个维度着手优化。 一、优化商品标题和…

(二)vForm 动态表单设计器之下拉、选择

系列文章目录 &#xff08;一&#xff09;vForm 动态表单设计器之使用 目录 系列文章目录 前言 一、后端需提供接口 二、组件配置 总结 前言 动态表单下拉、选择等组件&#xff0c;大概率要使用数据库中的数据&#xff0c;那么vForm如何拿到数据库中的数据呢&#xff1f;跟随…

Java ( 框架界面 , 按钮 , 动作监听ActionListener ,鼠标监听MouseListener,键盘监听KeyListener)的使用方法

package 拼图阶段任务.ui;import javax.swing.*; import java.awt.*; import java.awt.event.*;public class UseMethod {public static void main(String[] args) { // 框架的用法JFrame jf new JFrame();// 设置界面的宽高jf.setSize(603,680);// 设置界面的标题jf.setTitle…

Linux: network: send 失败的时候要不要close socket?

最近遇到一个例子&#xff0c;说有zerowindow出现&#xff1b;出现的原因是接收方的CPU被其他程序吃光&#xff0c;导致socket的read函数处理非常慢。说明接收端的接收缓存不够用。发送端自然而然的要停止发送。 但是如果在接收方的recv buff&#xff0c;以及发送方的send buf…

智能车竞赛指南:从零到一,驶向自动驾驶的未来

智能车竞赛指南&#xff1a;从零到一&#xff0c;驶向自动驾驶的未来 一、智能车竞赛概览1.1 竞赛介绍1.2 竞赛分类 二、智能车开发技术基础2.1 硬件平台2.2 软件开发 三、实战案例&#xff1a;循线小车开发3.1 系统架构3.2 代码示例 四、技术项目&#xff1a;基于ROS的视觉导航…

PersonalLLM——探索LLM是否能根据五大人格特质重新塑造一个新的角色?

1.概述 近年来&#xff0c;大型语言模型&#xff08;LLMs&#xff09;&#xff0c;例如ChatGPT&#xff0c;致力于构建能够辅助人类的个性化人工智能代理&#xff0c;这些代理以进行类似人类的对话为重点。在学术领域&#xff0c;尤其是社会科学中&#xff0c;一些研究报告已经…

Nacos 进阶篇---Nacos服务端怎么维护不健康的微服务实例 ?(七)

一、引言 在 Nacos 后台管理服务列表中&#xff0c;我们可以看到微服务列表&#xff0c;其中有一栏叫“健康实例数” &#xff08;如下图&#xff09;&#xff0c;表示对应的客户端实例信息是否可用状态。 那Nacos服务端是怎么感知客户端的状态是否可用呢 &#xff1f; 本章…

JAVA 中 HTTP 基本认证(Basic Authentication)

目录 服务端这么做服务端告知客户端使用 Basic Authentication 方式进行认证服务端接收并处理客户端按照 Basic Authentication 方式发送的数据 客户端这么做如果客户端是浏览器如果客户端是 RestTemplat如果客户端是 HttpClient 其它参考 服务端这么做 服务端告知客户端使用 …

Unity数据持久化2——XML

简介&#xff1a; 基础知识 XML文件格式 XML基本语法 XML属性 练习&#xff1a; C#读取存储XML XML文件存放位置 读取XML文件 练习&#xff1a; 存储修改XML文件 练习&#xff1a; 总结 实践小项目 必备知识点 必备知识点——C#中XML序列化 必备知识点——C#中XML反序列化 必备…

5.23-

回顾 I0多路复用的原理? 程序首先向操作系统发起一个IO多路复用请求&#xff0c;告诉操作系统需要监视哪些IO通道。这些IO通道可以包括网络套接字、文件描述符等操作系统随后会将这些IO通道放入一个队列中&#xff0c;并在某个IO通道就绪时&#xff08;如数据到达、文件可读…

Servlet的request对象

request对象的继承关系 1.HttpServletRequest接口继承了ServletRequest接口&#xff0c;对其父接口进行了扩展&#xff0c;可以处理满足所有http协议的请求 2.HttpServletRequest和ServletRequest都是接口&#xff0c;不能创建对象&#xff0c;因此在tomcat底层定义实现类并创…

Mysql总结1

Mysql常见日志 &#xff08;1&#xff09;错误日志&#xff1a;记录数据库服务器启动、停止、运行时存在的问题&#xff1b; &#xff08;2&#xff09;慢查询日志&#xff1a;记录查询时间超过long_query_time的sql语句&#xff0c;其中long_query_time可配置&#xff0c;且…

Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明

Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明 目录 Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明 一、简单介绍 二、单变量非线性变换 三、自…

园区网的基本了解

园区网使用的典型技术---IEEE802.3标准/IEEE802.11标准 封闭式园区网络 ---由内部人员使用&#xff0c;不能访问互联网。 ---制订各式各样的规章制度 ---NAC&#xff0c;网络接入控制 开放式园区网络 ---服务于公众的&#xff0c;认证 园区网的发展 第一代&#xff1a;…

驱动未来:IT行业的现状与发展趋势

前言 随着技术的不断进步&#xff0c;IT行业已成为推动全球经济和社会发展的关键力量。从云计算、大数据、人工智能到物联网、5G通信和区块链&#xff0c;这些技术正在重塑我们的生活和工作方式。本文将探讨IT行业的现状和未来发展趋势&#xff0c;并邀请行业领袖、技术专家和…

如何理解kmp的套娃式算法啊?

概念 KMP算法&#xff0c;全称Knuth Morris Pratt算法 。文章大部分内容出自《数据结构与算法之美》 核心思想 假设主串是a&#xff0c;模式串是b 在模式串与主串匹配的过程中&#xff0c;当遇到不可匹配的字符的时候&#xff0c;对已经对比过的字符&#xff0c;是否能找到…

开源大模型与闭源大模型:技术哲学的较量

目录 前言一、 开源大模型的优势1. 社区支持与合作1.1 全球协作网络1.2 快速迭代与创新1.3 共享最佳实践 2. 透明性与可信赖性2.1 审计与验证2.2 减少偏见与错误2.3 安全性提升 3. 低成本与易访问性3.1 降低研发成本3.2 易于定制化3.3 教育资源丰富 4. 促进标准化5. 推动技术进…

【数学】泰勒公式

目录 引言 一、泰勒公式 1.泰勒公式及推导 &#xff08;1&#xff09;推导 &#xff08;2&#xff09;公式 2.泰勒中值定理 &#xff08;1&#xff09;定理1&#xff08;佩亚诺余项&#xff09; &#xff08;2&#xff09;定理2&#xff08;拉格朗日余项&#xff09; …