ADuM1201可使用π121U31间接替换π122U31直接替换

ADuM1201可使用π121U31间接替换π122U31直接替换

一般低速隔离通信150Kbps电路可使用π121U31,价格优势较大。速度快的有其它型号可达10M,200M,600M。
本文主要介绍ADUM1201,替换芯片π121U31简单资料请访问下行链接
只要0.74元的双通道数字隔离器,1T1R,增强型ESD-3.0 kV ,150Kbps数字隔离器
π121U31电源和地引脚位置相同。2通道的输入和输出引脚不同,间接替换。
π122U31电源和地引脚位置相同,2通道的输入和输出引脚相同,直接替换。

ADuM1201外形和丝印

ADuM1201外形和丝印

串口通信隔离电路原理图ADuM1201外形和丝印

ADuM1201引脚定义和内部框图

ADuM1201引脚定义和内部框图

ADuM1201引脚定义和内部框图

π122U31引脚定义和内部框图

π122U31引脚定义和内部框图

π122U31引脚定义和内部框图

π121U31引脚定义和内部框图

π121U31引脚定义和内部框图

π121U31引脚定义和内部框图

ADuM1201用于电平转换,或隔离电路

串口通信隔离电路原理图
串口通信隔离电路原理图

串口通信隔离电路原理图

ADuM1201介绍

特征

窄体、符合 RoHS 标准、SOIC 8 引脚封装
低功耗操作
工作电压:5 V
0 Mbps 至 2 Mbps 时每通道最大 1.1 mA
每通道 3.7 mA(最大值,10 Mbps)
25 Mbps 时每通道最大 8.2 mA
3 V 工作电压
0 Mbps 至 2 Mbps 时每通道最大 0.8 mA
每通道 2.2 mA(最大值,10 Mbps)
每通道 4.8 mA(最大值,25 Mbps)
双向通信
3 V/5 V 电平转换
高温工作:125°C
高数据速率:直流至 25 Mbps (NRZ)
精确的定时特性
3 ns(最大脉宽失真)
3 ns(最大值)通道间匹配
高共模瞬态抗扰度:>25 kV/μs
安全和监管批准
UL认证
2500 V rms 持续 1 分钟,符合 UL 1577 标准
CSA 组件验收通知 5A
VDE合格证书
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
VIORM = 560 V 峰值
符合汽车应用要求

应用

尺寸关键型多通道隔离
SPI接口/数据转换器隔离
RS-232/RS-422/RS-485 收发器隔离
数字现场总线隔离
混合动力电动汽车、电池监控器和电机驱动

一般描述

ADuM1200/ADuM1201均为基于ADI公司iCoupler®技术的双通道数字隔离器。
这些隔离元件结合了高速CMOS和单片变压器技术,具有优于光耦合器等替代产品的出色性能特征。
通过避免使用LED和光电二极管,iCoupler器件消除了通常与光耦合器相关的设计困难。

简单的iCoupler数字接口和稳定的性能特征消除了光耦合器对不确定电流传输比、非线性传递函数以及温度和寿命影响的典型担忧。这些 iCoupler 产品无需外部驱动器和其他分立元件。此外,在相当的信号数据速率下,iCoupler器件的功耗仅为光耦合器的十分之一到六分之一。
ADuM1200/ADuM1201隔离器提供两个独立的隔离通道,具有多种通道配置和数据速率(参见《订购指南》)。两款器件均采用2.7 V至5.5 V电源电压工作。
提供与低压系统的兼容性,并实现跨隔离栅的电压转换功能。此外,ADuM1200/ADuM1201还具有低脉宽失真(CR级<3 ns)和紧密的通道间匹配(CR级<3 ns)。与其他光耦合器不同,ADuM1200/ADuM1201隔离器
具有获得专利的刷新功能,可在无输入逻辑转换和上电断电条件下确保直流正确性。
ADuM1200W和ADuM1201W均为汽车级版本,工作温度温度为125°C。有关详细信息,请参阅“汽车产品”部分。

所有电压都相对于各自的接地;4.5 V ≤ VDD1 ≤ 5.5 V、4.5 V ≤ VDD2 ≤ 5.5 V;除非另有说明,否则所有最小/最大规格均适用于整个推荐的工作范围;所有典型规格均在TA = 25°C,VDD1 = VDD2 = 5 V;这不适用于ADuM1200W和ADuM1201W汽车级产品。

应用信息

PCB布局

ADuM1200/ADuM1201数字隔离器无需外部接口电路即可实现逻辑接口。强烈建议在输入和输出电源引脚处使用电源旁路。
电容值必须在0.01 μF和0.1 μF之间。
电容器两端和输入电源引脚之间的总引线长度不得超过 20 mm。
有关电路板布局指南,请参阅AN-1109应用笔记。
传播延迟相关参数
传播延迟是一个参数,用于描述逻辑信号在组件中传播所需的时间。逻辑低电平输出的传播延迟可能与逻辑高电平输出的传播延迟不同。
脉宽失真是这两个传播延迟值之间的最大差值,表示输入信号的时序保持精度。
通道间匹配是指单个ADuM1200/ADuM1201组件内通道之间的传播延迟差异的最大值。
传播延迟偏斜是指在相同条件下工作的多个ADuM1200/ADuM1201元件之间传播延迟差异的最大值。

直流正确性和磁场抗扰度

隔离器输入端的正负逻辑转换通过变压器向解码器发送窄脉冲(~1 ns)。解码器是双稳态的,因此由脉冲设置或复位,
指示输入逻辑转换。在输入端没有超过 ~1 μs 的逻辑转换时,会发送一组周期性的刷新脉冲,指示正确的输入状态,以确保输出端的直流正确性。如果解码器在约5 μs内未接收到任何内部脉冲,则假定输入侧未通电或无法正常工作,在这种情况下,看门狗定时器电路将强制隔离器输出进入默认状态。
ADuM1200/ADuM1201对外部磁场具有极强的抗冲击性。ADuM1200/ADuM1201的磁场抗扰度限制取决于变压器接收线圈中的感应电压足够大,足以错误地设置或复位解码器的情况。

本文研究了ADuM1200/ADuM1201的3 V工作条件,因为它是最易受影响的工作模式。
变压器输出端的脉冲幅度大于 1.0 V。解码器的检测阈值约为0.5 V,
因此,建立了一个0.5 V的裕量,在这个裕量中可以承受感应电压。接收线圈两端感应的电压由下式给出
最大允许外部磁通密度 例如,在1 MHz的磁场频率下,0.2 kgauss的最大允许磁场在接收线圈上感应出0.25 V的电压。这大约是检测阈值的 50%,不会导致错误的输出转换。
同样,如果在发射脉冲期间发生此类事件(并且极性最差),则接收到的脉冲将从>1.0 V降低到0.75 V,仍远高于解码器的0.5 V检测阈值。
上述磁通密度值对应于距ADuM1200/ADuM1201变压器给定距离处的特定电流幅度。图14表示了这些允许电流幅度与所选距离频率的函数关系。如上所述,ADuM1200/ADuM1201具有极强的抗扰度,仅受极大电流的影响,这些电流在非常靠近元件的高频下工作。
以1 MHz为例,在距离ADuM1200/ADuM12015 mm5 mm处放置0.5 kA电流,以影响元件的工作。

请注意,在强磁场和高频的组合下,PCB走线形成的任何环路都可能感应出足够大的误差电压,从而触发后续电路的阈值。在布局此类跟踪时要小心,以避免这种可能性。

功耗

ADuM1200/ADuM1201隔离器给定通道的电源电流是电源电压、通道数据速率和通道输出负载的函数。
对于每个输入通道,电源电流由下式给出。略。
IIDDI (D)、IDDO (D) 是每通道的输入和输出动态电源电流 (mA/Mbps)。
CL 是输出负载电容 (pF)。
VDDO 是输出电源电压 (V)。
f是输入逻辑信号频率(MHz,输入数据速率的一半,NRZ信令)。
fr 是输入级刷新率 (Mbps)。
IDDI (Q)、IDDO (Q) 是指定的输入和输出静态电源电流 (mA)。
为了计算 IDD1 和 IDD2 的总电源电流,计算并计算对应于 IDD1 和 IDD2 的每个输入和输出通道的电源电流。
提供每通道电源电流作为空载输出条件下数据速率的函数。图8显示了在15 pF输出条件下,每通道电源电流与数据速率的关系。给出了ADuM1200和ADuM1201通道配置时总VDD1和VDD2电源电流与数据速率的关系。

绝缘寿命

当在足够长的时间内承受电压应力时,所有绝缘结构最终都会崩溃。绝缘退化的速率取决于施加在绝缘上的电压波形的特性。除了监管机构执行的测试外,ADI公司还进行了一系列广泛的评估,以确定ADuM1200/ADuM1201绝缘结构的寿命。
ADI公司使用高于额定连续工作电压的电压水平进行加速寿命测试。确定几种操作条件的加速系数。
这些因素允许计算实际工作电压下的失效时间。表 14 中显示的值总结了双极交流工作条件下 50 年使用寿命的峰值电压和 CSA/VDE 认证的最大工作电压。在许多情况下,批准的工作电压高于 50 年使用寿命电压。在某些情况下,在这些高工作电压下运行会导致绝缘寿命缩短。
ADuM1200/ADuM1201的绝缘寿命取决于隔离栅两端的电压波形类型。
iCoupler 绝缘结构以不同的速率退化,具体取决于波形是双极交流、单极交流、或直流电。图15、图16和图17分别显示了这些不同的隔离电压波形。
双极交流电压是最严格的环境。在交流双极性条件下,50年的工作寿命目标决定了ADI公司推荐的最大工作电压。
在单极交流或直流电压的情况下,绝缘上的应力明显降低,这允许在更高的工作电压下运行,但仍能实现 50 年的使用寿命。表 14 中列出的工作电压可以在保持 50 年最短寿命的同时应用,前提是电压符合单极交流或直流电压情况。任何不符合图16或图17的交叉绝缘电压波形均应视为双极交流波形,峰值电压应限制在表14中列出的50年寿命电压值。
请注意,图16所示的电压显示为正弦曲线,仅用于说明目的。它旨在表示在 0 V 和某个限制值之间变化的任何电压波形。
极限值可以是正值或负值,但电压不能超过 0 V。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/337209.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【VSCode】快捷方式log去掉分号

文章目录 一、引入二、解决办法 一、引入 我们使用 log 快速生成的 console.log() 都是带分号的 但是我们的编程习惯都是不带分号&#xff0c;每次自动生成后还需要手动删掉分号&#xff0c;太麻烦了&#xff01; 那有没有办法能够生成的时候就不带分号呢&#xff1f;自然是有…

ubuntu 18.04 ros1学习

总结了一下&#xff0c;学习内容主要有&#xff1a; 1.ubuntu的基础命令 pwd: 获得当前路径 cd: 进入或者退出一个目录 ls:列举该文件夹下的所有文件名称 mv 移动一个文件到另一个目录中 cp 拷贝一个文件到另一个目录中 rm -r 删除文件 gedit sudo 给予管理员权限 sudo apt-…

开源硬件初识——Orange Pi AIpro(8T)

开源硬件初识——Orange Pi AIpro&#xff08;8T&#xff09; 大抵是因为缘&#xff0c;妙不可言地就有了这么一块儿新一代AI开发板&#xff0c;乐于接触新鲜玩意儿的小火苗噌一下就燃了起来。 还没等拿到硬件&#xff0c;就已经开始在Orange Pi AIpro 官网上查阅起资料&…

基于安卓的虫害识别软件设计--(1)模型训练与可视化

引言 简介&#xff1a;使用pytorch框架&#xff0c;从模型训练、模型部署完整地实现了一个基础的图像识别项目计算资源&#xff1a;使用的是Kaggle&#xff08;每周免费30h的GPU&#xff09; 1.创建名为“utils_1”的模块 模块中包含&#xff1a;训练和验证的加载器函数、训练…

如何使用Spring Cache优化后端接口?

Spring Cache是Spring框架提供的一种缓存抽象,它可以很方便地集成到应用程序中,用于提高接口的性能和响应速度。使用Spring Cache可以避免重复执行耗时的方法,并且还可以提供一个统一的缓存管理机制,简化缓存的配置和管理。 本文将详细介绍如何使用Spring Cache来优化接口,…

【前端】Mac安装node14教程

在macOS上安装Node.js版本14.x的步骤如下&#xff1a; 打开终端。 使用Node Version Manager (nvm)安装Node.js。如果你还没有安装nvm&#xff0c;可以使用以下命令安装&#xff1a; curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.1/install.sh | bash 然后关…

基于NANO 9K 开发板加载PICORV32软核,并建立交叉编译环境

目录 0. 环境准备 1. 安装交叉编译器 2. 理解makefile工作机理 3. 熟悉示例程序的代码结构&#xff0c;理解软核代码的底层驱动原理 4. 熟悉烧录环节的工作机理&#xff0c; 建立下载环境 5. 编写例子blink&#xff0c; printf等&#xff0c; 加载运行 6. 后续任务 0.…

卷积网络迁移学习:实现思想与TensorFlow实践

摘要&#xff1a;迁移学习是一种利用已有知识来改善新任务学习性能的方法。 在深度学习中&#xff0c;迁移学习通过迁移卷积网络&#xff08;CNN&#xff09;的预训练权重&#xff0c;实现了在新领域或任务上的高效学习。 下面我将详细介绍迁移学习的概念、实现思想&#xff0c…

【成品设计】基于STM32单片机的饮水售卖机

基于STM32单片机的饮水售卖机 所需器件&#xff1a; STM32最小系统板。RFID&#xff1a;MFRC-522用于IC卡检测。OLED屏幕&#xff1a;用于显示当前水容量、系统状态等。水泵软管&#xff1a;用于抽水。水位传感器&#xff08;3个&#xff09;&#xff1a;用于分别标定&#x…

低代码赋能企业数字化转型:数百家软件公司的成功实践

本文转载于葡萄城公众号&#xff0c;原文链接&#xff1a;https://mp.weixin.qq.com/s/gN8Rq9TDmkMpCtNMMsBUXQ 导读 在当今的软件开发时代&#xff0c;以新技术助力企业数字化转型已经成为一个热门话题。如何快速适应技术变革&#xff0c;构建符合时代需求的技术能力和业务模…

【STM32F103】HC-SR04超声波测距

【STM32F103】HC-SR04超声波测距 一、HC-SR041、工作原理2、其他参数及时序图 二、代码编写思路三、HAL配置四、代码实现五、实验结果 前言 本次实验主要实现用stm32f103HC-SR04实现超声波测距&#xff0c;将测距数值通过串口上传到上位机串口助手 一、HC-SR04 1、工作原理 (…

【Unity知识点详解】Addressables的资源加载

今天来简单介绍一下Addressables&#xff0c;并介绍一下如何通过AssetName加载单个资源、如何通过Label加载多个资源、以及如何通过List<string>加载多个资源。由于Addressables的资源加载均为异步加载&#xff0c;所以今天给大家介绍如何使用StartCoroutine、如何使用As…

计算机算法中的数字表示法——浮点数

目录 1.前言2.浮点数的形式3.举例说明4.浮点数四则运算 微信公众号含更多FPGA相关源码&#xff1a; 1.前言 前面讲了定点表示法&#xff0c;定点表示法有一个主要的限制&#xff0c;那就是它不能有效地表示非常大或非常小的数&#xff0c;因为小数点的位置是固定的。为了解决这…

ios:文本框默认的copy、past改成中文复制粘贴

问题 ios 开发&#xff0c;对于输入框的一些默认文案展示&#xff0c;如复制粘贴是英文的&#xff0c;那么如何改为中文的呢 解决 按照路径找到这个文件 ios/项目/Info.plist&#xff0c;增加 <key>CFBundleAllowMixedLocalizations</key> <true/> <…

Echarts报警告Legend data should be same with series name or data name.

问题排查&#xff1a; 1. 确保 legend中的data中名字和series中每一项的name要匹配。 2. 仔细查看报警规律发现次数有在变化&#xff0c;因此找到代码中是动态修改legend,series的位置&#xff0c;检查一下这两个list的赋值逻辑。 果然&#xff0c;检查发现问题出现在了遍历里…

数据分析案例-在线食品订单数据可视化分析与建模分类

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

2.5Bump Mapping 凹凸映射

一、Bump Mapping 介绍 我们想要在屏幕上绘制物体的细节&#xff0c;从尺度上讲&#xff0c;一个物体的细节分为&#xff1a;宏观、中观、微观宏观尺度中其特征会覆盖多个像素&#xff0c;中观尺度只覆盖几个像素&#xff0c;微观尺度的特征就会小于一个像素宏观尺度是由顶点或…

在鲲鹏服务器搭建k8s高可用集群分享

高可用架构 本文采用kubeadm方式搭建k8s高可用集群&#xff0c;k8s高可用集群主要是对apiserver、etcd、controller-manager、scheduler做的高可用&#xff1b;高可用形式只要是为&#xff1a; 1. apiserver利用haproxykeepalived做的负载&#xff0c;多apiserver节点同时工作…

【主动均衡和被动均衡】

文章目录 1.被动均衡2.主动均衡1.被动均衡 被动均衡一般通过电阻放电的方式,对电压较高的电池进行放电,以热量形式释放电量,为其他电池争取更多充电时间。这样整个系统的电量受制于容量最少的电池。充电过程中,锂电池一般有一个充电上限保护电压值,当某一串电池达到此电压…

docker+vue云服务器打包镜像相关操作

dockervue云服务器打包镜像相关操作 容器化部署似乎成了当前一个非常主流的趋势&#xff0c;无论是前端还是后端&#xff0c;流行的操作就是给你一个镜像地址&#xff0c;让你自己去拉取镜像并运行镜像。这似乎是运维的工作&#xff0c;但是在没有专有运维的情况下&#xff0c…