昇思25天学习打卡营第10天|FCN图像语义分割

一、简介:

本篇博客是昇思大模型打卡营应用实践部分的第一次分享,主题是计算机视觉(CV)领域的FCN图像语义分割,接下来几天还会陆续分享其他CV领域的知识(doge)。

全卷积网络(Fully Convolutional Networks,FCN)是UC Berkeley的Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation[1]一文中提出的用于图像语义分割的一种框架。FCN是首个端到端(end to end)进行像素级(pixel level)预测的全卷积网络。

二、语义分割:

在具体介绍FCN之前,首先介绍何为语义分割:

图像语义分割(semantic segmentation)是图像处理和机器视觉技术中关于图像理解的重要一环,AI领域中一个重要分支,常被应用于人脸识别、物体检测、医学影像、卫星图像分析、自动驾驶感知等领域。

语义分割的目的是对图像中每个像素点进行分类。与普通的分类任务只输出某个类别不同,语义分割任务输出与输入大小相同的图像,输出图像的每个像素对应了输入图像每个像素的类别。语义在图像领域指的是图像的内容,对图片意思的理解,下图是一些语义分割的实例:

可以看到最右边的原始图像经过语义分割之后,实现了像素级别的目标物体识别。

三、模型简介:

FCN主要用于图像分割领域,是一种端到端的分割方法,是深度学习应用在图像语义分割的开山之作。通过进行像素级的预测直接得出与原图大小相等的label map。因FCN丢弃全连接层替换为全卷积层,网络所有层均为卷积层,故称为全卷积网络。

全卷积神经网络主要使用以下三种技术:

1、卷积化:

使用VGG-16作为FCN的backbone。VGG-16的输入为224*224的RGB图像,输出为1000个预测值。VGG-16只能接受固定大小的输入,丢弃了空间坐标,产生非空间输出。VGG-16中共有三个全连接层,全连接层也可视为带有覆盖整个区域的卷积。将全连接层转换为卷积层能使网络输出由一维非空间输出变为二维矩阵,利用输出能生成输入图片映射的heatmap。

2、上采样:

在卷积过程的卷积操作和池化操作会使得特征图的尺寸变小,为得到原图的大小的稠密图像预测,需要对得到的特征图进行上采样操作。使用双线性插值的参数来初始化上采样逆卷积的参数,后通过反向传播来学习非线性上采样。在网络中执行上采样,以通过像素损失的反向传播进行端到端的学习。

3、跳跃结构:

利用上采样技巧对最后一层的特征图进行上采样得到原图大小的分割是步长为32像素的预测,称之为FCN-32s。由于最后一层的特征图太小,损失过多细节,采用skips结构将更具有全局信息的最后一层预测和更浅层的预测结合,使预测结果获取更多的局部细节。将底层(stride 32)的预测(FCN-32s)进行2倍的上采样得到原尺寸的图像,并与从pool4层(stride 16)进行的预测融合起来(相加),这一部分的网络被称为FCN-16s。随后将这一部分的预测再进行一次2倍的上采样并与从pool3层得到的预测融合起来,这一部分的网络被称为FCN-8s。 Skips结构将深层的全局信息与浅层的局部信息相结合。

四、 数据处理:

开始下面的操作之前,需要先下载Mindspore,还没有下载的宝子,可以回看我的昇思25天学习打卡营第1天|快速入门-CSDN博客。

1、数据集下载:

import time
from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset_fcn8s.tar"download(url, "./dataset", kind="tar", replace=True)

2、数据集加载:

import numpy as np
import cv2
import mindspore.dataset as dsclass SegDataset:def __init__(self,image_mean,image_std,data_file='',batch_size=32,crop_size=512,max_scale=2.0,min_scale=0.5,ignore_label=255,num_classes=21,num_readers=2,num_parallel_calls=4):self.data_file = data_fileself.batch_size = batch_sizeself.crop_size = crop_sizeself.image_mean = np.array(image_mean, dtype=np.float32)self.image_std = np.array(image_std, dtype=np.float32)self.max_scale = max_scaleself.min_scale = min_scaleself.ignore_label = ignore_labelself.num_classes = num_classesself.num_readers = num_readersself.num_parallel_calls = num_parallel_callsmax_scale > min_scaledef preprocess_dataset(self, image, label):image_out = cv2.imdecode(np.frombuffer(image, dtype=np.uint8), cv2.IMREAD_COLOR)label_out = cv2.imdecode(np.frombuffer(label, dtype=np.uint8), cv2.IMREAD_GRAYSCALE)sc = np.random.uniform(self.min_scale, self.max_scale)new_h, new_w = int(sc * image_out.shape[0]), int(sc * image_out.shape[1])image_out = cv2.resize(image_out, (new_w, new_h), interpolation=cv2.INTER_CUBIC)label_out = cv2.resize(label_out, (new_w, new_h), interpolation=cv2.INTER_NEAREST)image_out = (image_out - self.image_mean) / self.image_stdout_h, out_w = max(new_h, self.crop_size), max(new_w, self.crop_size)pad_h, pad_w = out_h - new_h, out_w - new_wif pad_h > 0 or pad_w > 0:image_out = cv2.copyMakeBorder(image_out, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=0)label_out = cv2.copyMakeBorder(label_out, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=self.ignore_label)offset_h = np.random.randint(0, out_h - self.crop_size + 1)offset_w = np.random.randint(0, out_w - self.crop_size + 1)image_out = image_out[offset_h: offset_h + self.crop_size, offset_w: offset_w + self.crop_size, :]label_out = label_out[offset_h: offset_h + self.crop_size, offset_w: offset_w+self.crop_size]if np.random.uniform(0.0, 1.0) > 0.5:image_out = image_out[:, ::-1, :]label_out = label_out[:, ::-1]image_out = image_out.transpose((2, 0, 1))image_out = image_out.copy()label_out = label_out.copy()label_out = label_out.astype("int32")return image_out, label_outdef get_dataset(self):ds.config.set_numa_enable(True)dataset = ds.MindDataset(self.data_file, columns_list=["data", "label"],shuffle=True, num_parallel_workers=self.num_readers)transforms_list = self.preprocess_datasetdataset = dataset.map(operations=transforms_list, input_columns=["data", "label"],output_columns=["data", "label"],num_parallel_workers=self.num_parallel_calls)dataset = dataset.shuffle(buffer_size=self.batch_size * 10)dataset = dataset.batch(self.batch_size, drop_remainder=True)return dataset# 定义创建数据集的参数
IMAGE_MEAN = [103.53, 116.28, 123.675]
IMAGE_STD = [57.375, 57.120, 58.395]
DATA_FILE = "dataset/dataset_fcn8s/mindname.mindrecord"# 定义模型训练参数
train_batch_size = 4
crop_size = 512
min_scale = 0.5
max_scale = 2.0
ignore_label = 255
num_classes = 21# 实例化Dataset
dataset = SegDataset(image_mean=IMAGE_MEAN,image_std=IMAGE_STD,data_file=DATA_FILE,batch_size=train_batch_size,crop_size=crop_size,max_scale=max_scale,min_scale=min_scale,ignore_label=ignore_label,num_classes=num_classes,num_readers=2,num_parallel_calls=4)dataset = dataset.get_dataset()

 3、数据集可视化:

import numpy as np
import matplotlib.pyplot as pltplt.figure(figsize=(16, 8))# 对训练集中的数据进行展示
for i in range(1, 9):plt.subplot(2, 4, i)show_data = next(dataset.create_dict_iterator())show_images = show_data["data"].asnumpy()show_images = np.clip(show_images, 0, 1)
# 将图片转换HWC格式后进行展示plt.imshow(show_images[0].transpose(1, 2, 0))plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0)
plt.show()print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())), 'VertexGeek')

np.clip这个函数之前,我们没有介绍过,这里补充一下,函数是NumPy库的一部分,用于将数组中的元素限制在给定的最小值和最大值之间。如果一个元素的值小于最小值,它将被设置为最小值;如果它的值大于最大值,它将被设置为最大值;如果在最小值和最大值之间,它将保持不变。np.clip(show_images,0,1)方法确保图像数据的值在0到1的范围内,这样它们就可以正确地显示或者用于后续的图像处理步骤 。

 五、网络构建:

FCN网络的流程如下图所示:

  1. 输入图像image,经过pool1池化后,尺寸变为原始尺寸的1/2。
  2. 经过pool2池化,尺寸变为原始尺寸的1/4。
  3. 接着经过pool3、pool4、pool5池化,大小分别变为原始尺寸的1/8、1/16、1/32。
  4. 经过conv6-7卷积,输出的尺寸依然是原图的1/32。
  5. FCN-32s是最后使用反卷积,使得输出图像大小与输入图像相同。
  6. FCN-16s是将conv7的输出进行反卷积,使其尺寸扩大两倍至原图的1/16,并将其与pool4输出的特征图进行融合,后通过反卷积扩大到原始尺寸。
  7. FCN-8s是将conv7的输出进行反卷积扩大4倍,将pool4输出的特征图反卷积扩大2倍,并将pool3输出特征图拿出,三者融合后通反卷积扩大到原始尺寸。

 使用以下代码构建一个FCN-8s网络:

import mindspore.nn as nnclass FCN8s(nn.Cell):def __init__(self, n_class):super().__init__()self.n_class = n_classself.conv1 = nn.SequentialCell(nn.Conv2d(in_channels=3, out_channels=64,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(in_channels=64, out_channels=64,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(64),nn.ReLU())self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.SequentialCell(nn.Conv2d(in_channels=64, out_channels=128,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(128),nn.ReLU(),nn.Conv2d(in_channels=128, out_channels=128,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(128),nn.ReLU())self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv3 = nn.SequentialCell(nn.Conv2d(in_channels=128, out_channels=256,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(256),nn.ReLU(),nn.Conv2d(in_channels=256, out_channels=256,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(256),nn.ReLU(),nn.Conv2d(in_channels=256, out_channels=256,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(256),nn.ReLU())self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv4 = nn.SequentialCell(nn.Conv2d(in_channels=256, out_channels=512,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(in_channels=512, out_channels=512,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(in_channels=512, out_channels=512,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(512),nn.ReLU())self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv5 = nn.SequentialCell(nn.Conv2d(in_channels=512, out_channels=512,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(in_channels=512, out_channels=512,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(512),nn.ReLU(),nn.Conv2d(in_channels=512, out_channels=512,kernel_size=3, weight_init='xavier_uniform'),nn.BatchNorm2d(512),nn.ReLU())self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv6 = nn.SequentialCell(nn.Conv2d(in_channels=512, out_channels=4096,kernel_size=7, weight_init='xavier_uniform'),nn.BatchNorm2d(4096),nn.ReLU(),)self.conv7 = nn.SequentialCell(nn.Conv2d(in_channels=4096, out_channels=4096,kernel_size=1, weight_init='xavier_uniform'),nn.BatchNorm2d(4096),nn.ReLU(),)self.score_fr = nn.Conv2d(in_channels=4096, out_channels=self.n_class,kernel_size=1, weight_init='xavier_uniform')self.upscore2 = nn.Conv2dTranspose(in_channels=self.n_class, out_channels=self.n_class,kernel_size=4, stride=2, weight_init='xavier_uniform')self.score_pool4 = nn.Conv2d(in_channels=512, out_channels=self.n_class,kernel_size=1, weight_init='xavier_uniform')self.upscore_pool4 = nn.Conv2dTranspose(in_channels=self.n_class, out_channels=self.n_class,kernel_size=4, stride=2, weight_init='xavier_uniform')self.score_pool3 = nn.Conv2d(in_channels=256, out_channels=self.n_class,kernel_size=1, weight_init='xavier_uniform')self.upscore8 = nn.Conv2dTranspose(in_channels=self.n_class, out_channels=self.n_class,kernel_size=16, stride=8, weight_init='xavier_uniform')def construct(self, x):x1 = self.conv1(x)p1 = self.pool1(x1)x2 = self.conv2(p1)p2 = self.pool2(x2)x3 = self.conv3(p2)p3 = self.pool3(x3)x4 = self.conv4(p3)p4 = self.pool4(x4)x5 = self.conv5(p4)p5 = self.pool5(x5)x6 = self.conv6(p5)x7 = self.conv7(x6)sf = self.score_fr(x7)u2 = self.upscore2(sf)s4 = self.score_pool4(p4)f4 = s4 + u2u4 = self.upscore_pool4(f4)s3 = self.score_pool3(p3)f3 = s3 + u4out = self.upscore8(f3)return out

六、训练准备:

1、VGG16权重导入:

FCN使用VGG-16作为骨干网络,用于实现图像编码。使用下面代码导入VGG-16预训练模型的部分预训练权重。

from download import download
from mindspore import load_checkpoint, load_param_into_neturl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/fcn8s_vgg16_pretrain.ckpt"
download(url, "fcn8s_vgg16_pretrain.ckpt", replace=True)
def load_vgg16():ckpt_vgg16 = "fcn8s_vgg16_pretrain.ckpt"param_vgg = load_checkpoint(ckpt_vgg16)load_param_into_net(net, param_vgg)print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())), "VertexGeek")

2、损失函数:

语义分割是对图像中每个像素点进行分类,仍是分类问题,故损失函数选择交叉熵损失函数来计算FCN网络输出与mask之间的交叉熵损失。这里我们使用的是mindspore.nn.CrossEntropyLoss()作为损失函数。 

from mindspore.nn import CrossEntropyLossloss = CrossEntropyLoss()

3、评估指标:

 这一段实在是不好打出来,这里我偷个懒,直接给大家上图片了(doge)

import numpy as np
import mindspore as ms
import mindspore.nn as nn
import mindspore.train as trainclass PixelAccuracy(train.Metric):def __init__(self, num_class=21):super(PixelAccuracy, self).__init__()self.num_class = num_classdef _generate_matrix(self, gt_image, pre_image):mask = (gt_image >= 0) & (gt_image < self.num_class)label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]count = np.bincount(label, minlength=self.num_class**2)confusion_matrix = count.reshape(self.num_class, self.num_class)return confusion_matrixdef clear(self):self.confusion_matrix = np.zeros((self.num_class,) * 2)def update(self, *inputs):y_pred = inputs[0].asnumpy().argmax(axis=1)y = inputs[1].asnumpy().reshape(4, 512, 512)self.confusion_matrix += self._generate_matrix(y, y_pred)def eval(self):pixel_accuracy = np.diag(self.confusion_matrix).sum() / self.confusion_matrix.sum()return pixel_accuracyclass PixelAccuracyClass(train.Metric):def __init__(self, num_class=21):super(PixelAccuracyClass, self).__init__()self.num_class = num_classdef _generate_matrix(self, gt_image, pre_image):mask = (gt_image >= 0) & (gt_image < self.num_class)label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]count = np.bincount(label, minlength=self.num_class**2)confusion_matrix = count.reshape(self.num_class, self.num_class)return confusion_matrixdef update(self, *inputs):y_pred = inputs[0].asnumpy().argmax(axis=1)y = inputs[1].asnumpy().reshape(4, 512, 512)self.confusion_matrix += self._generate_matrix(y, y_pred)def clear(self):self.confusion_matrix = np.zeros((self.num_class,) * 2)def eval(self):mean_pixel_accuracy = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1)mean_pixel_accuracy = np.nanmean(mean_pixel_accuracy)return mean_pixel_accuracyclass MeanIntersectionOverUnion(train.Metric):def __init__(self, num_class=21):super(MeanIntersectionOverUnion, self).__init__()self.num_class = num_classdef _generate_matrix(self, gt_image, pre_image):mask = (gt_image >= 0) & (gt_image < self.num_class)label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]count = np.bincount(label, minlength=self.num_class**2)confusion_matrix = count.reshape(self.num_class, self.num_class)return confusion_matrixdef update(self, *inputs):y_pred = inputs[0].asnumpy().argmax(axis=1)y = inputs[1].asnumpy().reshape(4, 512, 512)self.confusion_matrix += self._generate_matrix(y, y_pred)def clear(self):self.confusion_matrix = np.zeros((self.num_class,) * 2)def eval(self):mean_iou = np.diag(self.confusion_matrix) / (np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -np.diag(self.confusion_matrix))mean_iou = np.nanmean(mean_iou)return mean_iouclass FrequencyWeightedIntersectionOverUnion(train.Metric):def __init__(self, num_class=21):super(FrequencyWeightedIntersectionOverUnion, self).__init__()self.num_class = num_classdef _generate_matrix(self, gt_image, pre_image):mask = (gt_image >= 0) & (gt_image < self.num_class)label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]count = np.bincount(label, minlength=self.num_class**2)confusion_matrix = count.reshape(self.num_class, self.num_class)return confusion_matrixdef update(self, *inputs):y_pred = inputs[0].asnumpy().argmax(axis=1)y = inputs[1].asnumpy().reshape(4, 512, 512)self.confusion_matrix += self._generate_matrix(y, y_pred)def clear(self):self.confusion_matrix = np.zeros((self.num_class,) * 2)def eval(self):freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix)iu = np.diag(self.confusion_matrix) / (np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -np.diag(self.confusion_matrix))frequency_weighted_iou = (freq[freq > 0] * iu[freq > 0]).sum()return frequency_weighted_iou

等把课程所有的内容都过一遍,我再仔细介绍这个网络的结构(先挖个坑)

七、模型训练:

准备完成之后,我们就可以开始训练了:

import mindspore
from mindspore import Tensor
import mindspore.nn as nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor, Modeldevice_target = "Ascend"
mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target=device_target)train_batch_size = 4
num_classes = 21
# 初始化模型结构
net = FCN8s(n_class=21)
# 导入vgg16预训练参数
load_vgg16()
# 计算学习率
min_lr = 0.0005
base_lr = 0.05
train_epochs = 1
iters_per_epoch = dataset.get_dataset_size()
total_step = iters_per_epoch * train_epochslr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,base_lr,total_step,iters_per_epoch,decay_epoch=2)
lr = Tensor(lr_scheduler[-1])# 定义损失函数
loss = nn.CrossEntropyLoss(ignore_index=255)
# 定义优化器
optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.0001)
# 定义loss_scale
scale_factor = 4
scale_window = 3000
loss_scale_manager = ms.amp.DynamicLossScaleManager(scale_factor, scale_window)
# 初始化模型
if device_target == "Ascend":model = Model(net, loss_fn=loss, optimizer=optimizer, loss_scale_manager=loss_scale_manager, metrics={"pixel accuracy": PixelAccuracy(), "mean pixel accuracy": PixelAccuracyClass(), "mean IoU": MeanIntersectionOverUnion(), "frequency weighted IoU": FrequencyWeightedIntersectionOverUnion()})
else:model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"pixel accuracy": PixelAccuracy(), "mean pixel accuracy": PixelAccuracyClass(), "mean IoU": MeanIntersectionOverUnion(), "frequency weighted IoU": FrequencyWeightedIntersectionOverUnion()})# 设置ckpt文件保存的参数
time_callback = TimeMonitor(data_size=iters_per_epoch)
loss_callback = LossMonitor()
callbacks = [time_callback, loss_callback]
save_steps = 330
keep_checkpoint_max = 5
config_ckpt = CheckpointConfig(save_checkpoint_steps=10,keep_checkpoint_max=keep_checkpoint_max)
ckpt_callback = ModelCheckpoint(prefix="FCN8s",directory="./ckpt",config=config_ckpt)
callbacks.append(ckpt_callback)
model.train(train_epochs, dataset, callbacks=callbacks)print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), 'VertexGeek')

尝试了训练一把,时间太长了,我这里手动截断了:

 当然如果实在想体验一把完全体的训练,可以考虑手动调大batch_size和learning_rate。

八、模型评估:

import mindspore
from mindspore.nn import Adam
from mindspore import Tensor
import mindspore.nn as nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor, ModelIMAGE_MEAN = [103.53, 116.28, 123.675]
IMAGE_STD = [57.375, 57.120, 58.395]
DATA_FILE = "dataset/dataset_fcn8s/mindname.mindrecord"# 下载已训练好的权重文件
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/FCN8s.ckpt"
download(url, "FCN8s.ckpt", replace=True)
net = FCN8s(n_class=num_classes)ckpt_file = "FCN8s.ckpt"
param_dict = load_checkpoint(ckpt_file)
load_param_into_net(net, param_dict)
device_target = "Ascend"
mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target=device_target)# 定义损失函数
loss = nn.CrossEntropyLoss(ignore_index=255)
# 定义优化器
optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=0.005, momentum=0.9, weight_decay=0.0001)
# 定义loss_scale
scale_factor = 4
scale_window = 3000
loss_scale_manager = ms.amp.DynamicLossScaleManager(scale_factor, scale_window)if device_target == "Ascend":model = Model(net, loss_fn=loss, optimizer=optimizer, loss_scale_manager=loss_scale_manager, metrics={"pixel accuracy": PixelAccuracy(), "mean pixel accuracy": PixelAccuracyClass(), "mean IoU": MeanIntersectionOverUnion(), "frequency weighted IoU": FrequencyWeightedIntersectionOverUnion()})
else:model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"pixel accuracy": PixelAccuracy(), "mean pixel accuracy": PixelAccuracyClass(), "mean IoU": MeanIntersectionOverUnion(), "frequency weighted IoU": FrequencyWeightedIntersectionOverUnion()})# 实例化Dataset
dataset = SegDataset(image_mean=IMAGE_MEAN,image_std=IMAGE_STD,data_file=DATA_FILE,batch_size=train_batch_size,crop_size=crop_size,max_scale=max_scale,min_scale=min_scale,ignore_label=ignore_label,num_classes=num_classes,num_readers=2,num_parallel_calls=4)
dataset_eval = dataset.get_dataset()print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), 'VertexGeek')

不过在运行model.eval()的时候遇到了同步流的问题,有知道怎么解决的宝子,私信我哈。

 

九、模型推理:

import cv2
import matplotlib.pyplot as pltnet = FCN8s(n_class=num_classes)
# 设置超参
ckpt_file = "FCN8s.ckpt"
param_dict = load_checkpoint(ckpt_file)
load_param_into_net(net, param_dict)
eval_batch_size = 4
img_lst = []
mask_lst = []
res_lst = []
# 推理效果展示(上方为输入图片,下方为推理效果图片)
plt.figure(figsize=(8, 5))
show_data = next(dataset_eval.create_dict_iterator())
show_images = show_data["data"].asnumpy()
mask_images = show_data["label"].reshape([4, 512, 512])
show_images = np.clip(show_images, 0, 1)
for i in range(eval_batch_size):img_lst.append(show_images[i])mask_lst.append(mask_images[i])
res = net(show_data["data"]).asnumpy().argmax(axis=1)
for i in range(eval_batch_size):plt.subplot(2, 4, i + 1)plt.imshow(img_lst[i].transpose(1, 2, 0))plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)plt.subplot(2, 4, i + 5)plt.imshow(res[i])plt.axis("off")plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), 'VertexGeek')

模型推理也出现了这个问题(苦笑),有佬帮忙解决一下吗?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/365956.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序-插槽slot

一.插槽slot 在页面使用自定义组件的时候&#xff0c;如果在自定义组件里面写子组件&#xff0c;子组件的内容无法显示。 <custom01> <text slotslot-top>你好&#xff0c;上方组件</text> 你好&#xff0c;组件 <text slotslot-bottom>你好&#xf…

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的&#xff1a; 生成wip fiberNode树标记副作用flags 更新流程的步骤&#xff1a; 递&#xff1a;beginWork归&#xff1a;completeWork 在 上一节 &#xff0c;我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…

Nginx 配置文件

Nginx的配置文件的组成部分&#xff1a; 主配置文件&#xff1a;nginx.conf子配置文件&#xff1a;include conf.d/*.conf 全局配置 nginx 有多种模块 核心模块&#xff1a;是 Nginx 服务器正常运行必不可少的模块&#xff0c;提供错误日志记录 、配置文件解析 、事件驱动机…

32.哀家要长脑子了!

1.299. 猜数字游戏 - 力扣&#xff08;LeetCode&#xff09; 公牛还是挺好数的&#xff0c;奶牛。。。妈呀&#xff0c;一朝打回解放前 抓本质抓本质&#xff0c;有多少位非公牛数可以通过重新排列转换公牛数字&#xff0c;意思就是&#xff0c;当这个数不是公牛数字时&#x…

怎样打造交互式3D数据可视化?

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 基于Plotly.js的交互式散点图和直方图联动 应用场景介绍 本代码演示了如何使用Plotly.js库创建交互式散点图和直方图联动&#xff0c;允许用户通过套索选择散点图中的数据点&#xff0c;并实时更新直方图以显…

大促前夕即高点,综合电商平台的“稀缺”魔法正在消失?

新一期618大促早已结束良久了&#xff0c;但似乎其产生的余韵却仍旧未消散。 从最直观的资本市场走势来看&#xff0c;自这一波618大促陆续开展之后&#xff0c;包括京东、阿里巴巴、拼多多等港美股股价就一改此前的上行态势&#xff0c;持续下滑至今。 事实上&#xff0c;早…

Hadoop3:MapReduce中的Reduce Join和Map Join

一、概念说明 学过MySQL的都知道&#xff0c;join和left join 这里的join含义和MySQL的join含义一样 就是对两张表的数据&#xff0c;进行关联查询 Hadoop的MapReduce阶段&#xff0c;分为2个阶段 一个Map&#xff0c;一个Reduce 那么&#xff0c;join逻辑&#xff0c;就可以…

【漏洞复现】和丰多媒体信息发布系统 QH.aspx 任意文件上传漏洞

0x01 产品简介 和丰多媒体信息发布系统也称数字标牌&#xff08;Digital Signage&#xff09;&#xff0c;是指通过大屏幕终端显示设备&#xff0c;发布商业、财经和娱乐信息的多媒体专业视听系统&#xff0c;常被称为除纸张媒体、电台、电视、互联网之外的“第五媒体”。该系…

第四节:如何使用注解方式从IOC中获取bean(自学Spring boot 3.x的第一天)

大家好&#xff0c;我是网创有方&#xff0c;上一节学习了如何理解Spring的两个特性IOC和AOP&#xff0c;这一节来基于上节的内容进行一个简单实践。这节要实现的效果是通过IOC容器获取到Bean&#xff0c;并且将Bean的属性显示打印出来。 第一步&#xff1a;创建pojo实体类stu…

MySQL 常见存储引擎详解(一)

本篇主要介绍MySQL中常见的存储引擎。 目录 一、InnoDB引擎 简介 特性 最佳实践 创建InnoDB 存储文件 二、MyISAM存储引擎 简介 特性 创建MyISAM表 存储文件 存储格式 静态格式 动态格式 压缩格式 三、MEMORY存储引擎 简介 特点 创建MEMORY表 存储文件 内…

AI智能剪辑发展到哪种地步?来看看云微客就知道了!

不是短视频团队招不起&#xff0c;而是矩阵账号更有性价比。企业做短视频有反思过为什么干不过同行吗&#xff1f;我们来看看大佬是怎么做的。云微客AI智能剪辑系统用几百个账号做矩阵布局&#xff0c;系统每天自动进行批量剪视频、写文案、一键自动化发布视频&#xff0c;一个…

RedHat9 | 内部YUM本地源服务器搭建

服务器参数 标识公司内部YUM服务器主机名yum-server网络信息192.168.37.1/24网络属性静态地址主要操作用户root 一、基础环境信息配置 修改主机名 [rootyum-server ~]# hostnamectl hostname yum-server添加网络信息 [rootyum-server ~]# nmcli connection modify ens160 …

Web2Code :网页理解和代码生成能力的评估框架

多模态大型语言模型&#xff08;MLLMs&#xff09;在过去几年中取得了爆炸性的增长。利用大型语言模型&#xff08;LLMs&#xff09;中丰富的常识知识&#xff0c;MLLMs在处理和推理各种模态&#xff08;如图像、视频和音频&#xff09;方面表现出色&#xff0c;涵盖了识别、推…

数据结构:队列详解 c++信息学奥赛基础知识讲解

目录 一、队列概念 二、队列容器 三、队列操作 四、代码实操 五、队列遍历 六、案例实操 题目描述&#xff1a; 输入格式&#xff1a; 输出格式&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; 详细代码&#xff1a; 一、队列概念 队列是一种特殊的线性…

量化交易 - 策略回测

策略回测 1、什么是策略回测&#xff1f;2、策略回测的作用3、策略回测系统概述3.1策略回测中相关的指标介绍3.2量化交易策略的资金容量3.3 完整的策略回测系统包含哪些内容 1、什么是策略回测&#xff1f; 策略回测&#xff0c;也称之为策略回溯测试&#xff0c;是指利用交易…

Sectigo或RapidSSL DV通配符SSL证书哪个性价比更高?

在当前的网络安全领域&#xff0c;选择一款合适的SSL证书对于保护网站和用户数据至关重要。Sectigo和RapidSSL作为市场上知名的SSL证书提供商&#xff0c;以其高性价比和快速的服务响应而受到市场的青睐。本文将对Sectigo和RapidSSL DV通配符证书进行深入对比&#xff0c;帮助用…

Cosine 余弦相似度并行计算的数学原理与Python实现

背景 Cosine 我在LLM与RAG系列课程已经讲了很多次了&#xff0c;这里不在熬述&#xff0c;它在LLM分析中&#xff0c;尤其是在语义相似度的计算中至关重要&#xff0c;在dot attention机制中&#xff0c;也会看到他的身影。这里讲的是纯数学上的运算与python是如何运用相关库进…

昇思25天学习打卡营第6天|网络构建

网络构建 概念模型模型参数 概念 神经网络模型是由神经网络层和Tensor操作构成的&#xff0c;mindspore.nn提供了常见神经网络层的实现&#xff0c;在MindSpore中&#xff0c;Cell类是构建所有网络的基类&#xff0c;也是网络的基本单元。一个神经网络模型表示为一个Cell&…

事务的特性-原子性(Atomicity)、一致性(Consistency)、隔离性(Asolation)、持久性(Durability)

一、引言 1、数据库管理系统DBMS为保证定义的事务是一个逻辑工作单元&#xff0c;达到引入事务的目的&#xff0c;实现的事务机制要保证事务具有原子性、一致性、隔离性和持久性&#xff0c;事务的这四个特性也统称为事务的ACID特性 2、当事务保持了ACID特性&#xff0c;才能…

Jasper studio报表工具中,如何判断subDataSource()子报表数据源是否为空

目录 1.1、错误描述 1.2、解决方案 1.1、错误描述 今天在处理一个有关Jasper Studio报表模板制作的线上问题&#xff0c;需要根据某个报表子数据源是否为空&#xff0c;来决定对应的组件是否显示&#xff0c;找了好久的资料都没有实现&#xff0c;最后找到一种解决办法。就是…