1、问题背景
一位 Reddit 用户使用 Python 的 NLTK 库来训练一个朴素贝叶斯分类器以研究其他句子的情感,但是无论输入什么句子,分类器总是预测为正面。
2、解决方案
经过仔细检查,发现原始代码中的问题在于 wordList
为空。因此,需要将 wordList
赋值为从推文中提取的单词特征。修改后的代码如下:
wordList = getwordfeatures(getwords(tweets))
wordList = [i for i in wordList if not i in stopwords.words('english')]
wordList = [i for i in wordList if not i in customstopwords]
以下是完整的修复代码:
import nltk
import math
import re
import sys
import os
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')from nltk.corpus import stopwords__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))postweet = __location__ + "/postweet.txt"
negtweet = __location__ + "/negtweet.txt"customstopwords = ['band', 'they', 'them']# Load positive tweets into a list
p = open(postweet, 'r')
postxt = p.readlines()# Load negative tweets into a list
n = open(negtweet, 'r')
negtxt = n.readlines()neglist = []
poslist = []# Create a list of 'negatives' with the exact length of our negative tweet list.
for i in range(0, len(negtxt)):neglist.append('negative')# Likewise for positive.
for i in range(0, len(postxt)):poslist.append('positive')# Creates a list of tuples, with sentiment tagged.
postagged = zip(postxt, poslist)
negtagged = zip(negtxt, neglist)# Combines all of the tagged tweets to one large list.
taggedtweets = postagged + negtaggedtweets = []# Create a list of words in the tweet, within a tuple.
for (word, sentiment) in taggedtweets:word_filter = [i.lower() for i in word.split()]tweets.append((word_filter, sentiment))# Pull out all of the words in a list of tagged tweets, formatted in tuples.
def getwords(tweets):allwords = []for (words, sentiment) in tweets:allwords.extend(words)return allwords# Order a list of tweets by their frequency.
def getwordfeatures(listoftweets):# Print out wordfreq if you want to have a look at the individual counts of words.wordfreq = nltk.FreqDist(listoftweets)words = wordfreq.keys()return words# Calls above functions - gives us list of the words in the tweets, ordered by freq.
print(getwordfeatures(getwords(tweets)))wordList = getwordfeatures(getwords(tweets))
wordList = [i for i in wordList if not i in stopwords.words('english')]
wordList = [i for i in wordList if not i in customstopwords]def feature_extractor(doc):docwords = set(doc)features = {}for i in wordList:features['contains(%s)' % i] = (i in docwords)return features# Creates a training set - classifier learns distribution of true/falses in the input.
training_set = nltk.classify.apply_features(feature_extractor, tweets)
classifier = nltk.NaiveBayesClassifier.train(training_set)print(classifier.show_most_informative_features(n=30))while True:input = raw_input('ads')if input == 'exit':breakelif input == 'informfeatures':print(classifier.show_most_informative_features(n=30))continueelse:input = input.lower()input = input.split()print('\nWe think that the sentiment was ' + classifier.classify(feature_extractor(input)) + ' in that sentence.\n')p.close()
n.close()
用户可以根据需要调整 customstopwords
列表以过滤掉不相关的词语。